Metamath Proof Explorer


Theorem bj-dfsb2

Description: Alternate (dual) definition of substitution df-sb not using dummy variables. (Contributed by BJ, 19-Mar-2021)

Ref Expression
Assertion bj-dfsb2 ( [ 𝑦 / 𝑥 ] 𝜑 ↔ ( ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) ∨ ( 𝑥 = 𝑦𝜑 ) ) )

Proof

Step Hyp Ref Expression
1 dfsb1 ( [ 𝑦 / 𝑥 ] 𝜑 ↔ ( ( 𝑥 = 𝑦𝜑 ) ∧ ∃ 𝑥 ( 𝑥 = 𝑦𝜑 ) ) )
2 bj-sbsb ( ( ( 𝑥 = 𝑦𝜑 ) ∧ ∃ 𝑥 ( 𝑥 = 𝑦𝜑 ) ) ↔ ( ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) ∨ ( 𝑥 = 𝑦𝜑 ) ) )
3 1 2 bitri ( [ 𝑦 / 𝑥 ] 𝜑 ↔ ( ∀ 𝑥 ( 𝑥 = 𝑦𝜑 ) ∨ ( 𝑥 = 𝑦𝜑 ) ) )