Description: Alternate (dual) definition of substitution df-sb not using dummy variables. (Contributed by BJ, 19-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bj-dfsb2 | ⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ∨ ( 𝑥 = 𝑦 ∧ 𝜑 ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dfsb1 | ⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ ( ( 𝑥 = 𝑦 → 𝜑 ) ∧ ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜑 ) ) ) | |
| 2 | bj-sbsb | ⊢ ( ( ( 𝑥 = 𝑦 → 𝜑 ) ∧ ∃ 𝑥 ( 𝑥 = 𝑦 ∧ 𝜑 ) ) ↔ ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ∨ ( 𝑥 = 𝑦 ∧ 𝜑 ) ) ) | |
| 3 | 1 2 | bitri | ⊢ ( [ 𝑦 / 𝑥 ] 𝜑 ↔ ( ∀ 𝑥 ( 𝑥 = 𝑦 → 𝜑 ) ∨ ( 𝑥 = 𝑦 ∧ 𝜑 ) ) ) |