Metamath Proof Explorer


Theorem bj-dfsb2

Description: Alternate (dual) definition of substitution df-sb not using dummy variables. (Contributed by BJ, 19-Mar-2021)

Ref Expression
Assertion bj-dfsb2
|- ( [ y / x ] ph <-> ( A. x ( x = y -> ph ) \/ ( x = y /\ ph ) ) )

Proof

Step Hyp Ref Expression
1 dfsb1
 |-  ( [ y / x ] ph <-> ( ( x = y -> ph ) /\ E. x ( x = y /\ ph ) ) )
2 bj-sbsb
 |-  ( ( ( x = y -> ph ) /\ E. x ( x = y /\ ph ) ) <-> ( A. x ( x = y -> ph ) \/ ( x = y /\ ph ) ) )
3 1 2 bitri
 |-  ( [ y / x ] ph <-> ( A. x ( x = y -> ph ) \/ ( x = y /\ ph ) ) )