Description: Alternate (dual) definition of substitution df-sb not using dummy variables. (Contributed by BJ, 19-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bj-dfsb2 | |- ( [ y / x ] ph <-> ( A. x ( x = y -> ph ) \/ ( x = y /\ ph ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dfsb1 | |- ( [ y / x ] ph <-> ( ( x = y -> ph ) /\ E. x ( x = y /\ ph ) ) ) | |
| 2 | bj-sbsb | |- ( ( ( x = y -> ph ) /\ E. x ( x = y /\ ph ) ) <-> ( A. x ( x = y -> ph ) \/ ( x = y /\ ph ) ) ) | |
| 3 | 1 2 | bitri | |- ( [ y / x ] ph <-> ( A. x ( x = y -> ph ) \/ ( x = y /\ ph ) ) ) |