Description: Alternate (dual) definition of substitution df-sb not using dummy variables. (Contributed by BJ, 19-Mar-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | bj-dfsb2 | |- ( [ y / x ] ph <-> ( A. x ( x = y -> ph ) \/ ( x = y /\ ph ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsb1 | |- ( [ y / x ] ph <-> ( ( x = y -> ph ) /\ E. x ( x = y /\ ph ) ) ) |
|
2 | bj-sbsb | |- ( ( ( x = y -> ph ) /\ E. x ( x = y /\ ph ) ) <-> ( A. x ( x = y -> ph ) \/ ( x = y /\ ph ) ) ) |
|
3 | 1 2 | bitri | |- ( [ y / x ] ph <-> ( A. x ( x = y -> ph ) \/ ( x = y /\ ph ) ) ) |