Metamath Proof Explorer


Theorem bj-sbsb

Description: Biconditional showing two possible (dual) definitions of substitution df-sb not using dummy variables. (Contributed by BJ, 19-Mar-2021)

Ref Expression
Assertion bj-sbsb
|- ( ( ( x = y -> ph ) /\ E. x ( x = y /\ ph ) ) <-> ( A. x ( x = y -> ph ) \/ ( x = y /\ ph ) ) )

Proof

Step Hyp Ref Expression
1 simpl
 |-  ( ( ( x = y -> ph ) /\ E. x ( x = y /\ ph ) ) -> ( x = y -> ph ) )
2 pm2.27
 |-  ( x = y -> ( ( x = y -> ph ) -> ph ) )
3 2 anc2li
 |-  ( x = y -> ( ( x = y -> ph ) -> ( x = y /\ ph ) ) )
4 3 sps
 |-  ( A. x x = y -> ( ( x = y -> ph ) -> ( x = y /\ ph ) ) )
5 olc
 |-  ( ( x = y /\ ph ) -> ( A. x ( x = y -> ph ) \/ ( x = y /\ ph ) ) )
6 1 4 5 syl56
 |-  ( A. x x = y -> ( ( ( x = y -> ph ) /\ E. x ( x = y /\ ph ) ) -> ( A. x ( x = y -> ph ) \/ ( x = y /\ ph ) ) ) )
7 simpr
 |-  ( ( ( x = y -> ph ) /\ E. x ( x = y /\ ph ) ) -> E. x ( x = y /\ ph ) )
8 equs5
 |-  ( -. A. x x = y -> ( E. x ( x = y /\ ph ) <-> A. x ( x = y -> ph ) ) )
9 8 biimpd
 |-  ( -. A. x x = y -> ( E. x ( x = y /\ ph ) -> A. x ( x = y -> ph ) ) )
10 orc
 |-  ( A. x ( x = y -> ph ) -> ( A. x ( x = y -> ph ) \/ ( x = y /\ ph ) ) )
11 7 9 10 syl56
 |-  ( -. A. x x = y -> ( ( ( x = y -> ph ) /\ E. x ( x = y /\ ph ) ) -> ( A. x ( x = y -> ph ) \/ ( x = y /\ ph ) ) ) )
12 6 11 pm2.61i
 |-  ( ( ( x = y -> ph ) /\ E. x ( x = y /\ ph ) ) -> ( A. x ( x = y -> ph ) \/ ( x = y /\ ph ) ) )
13 sp
 |-  ( A. x ( x = y -> ph ) -> ( x = y -> ph ) )
14 pm3.4
 |-  ( ( x = y /\ ph ) -> ( x = y -> ph ) )
15 13 14 jaoi
 |-  ( ( A. x ( x = y -> ph ) \/ ( x = y /\ ph ) ) -> ( x = y -> ph ) )
16 equs4
 |-  ( A. x ( x = y -> ph ) -> E. x ( x = y /\ ph ) )
17 19.8a
 |-  ( ( x = y /\ ph ) -> E. x ( x = y /\ ph ) )
18 16 17 jaoi
 |-  ( ( A. x ( x = y -> ph ) \/ ( x = y /\ ph ) ) -> E. x ( x = y /\ ph ) )
19 15 18 jca
 |-  ( ( A. x ( x = y -> ph ) \/ ( x = y /\ ph ) ) -> ( ( x = y -> ph ) /\ E. x ( x = y /\ ph ) ) )
20 12 19 impbii
 |-  ( ( ( x = y -> ph ) /\ E. x ( x = y /\ ph ) ) <-> ( A. x ( x = y -> ph ) \/ ( x = y /\ ph ) ) )