| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl |  |-  ( ( ( x = y -> ph ) /\ E. x ( x = y /\ ph ) ) -> ( x = y -> ph ) ) | 
						
							| 2 |  | pm2.27 |  |-  ( x = y -> ( ( x = y -> ph ) -> ph ) ) | 
						
							| 3 | 2 | anc2li |  |-  ( x = y -> ( ( x = y -> ph ) -> ( x = y /\ ph ) ) ) | 
						
							| 4 | 3 | sps |  |-  ( A. x x = y -> ( ( x = y -> ph ) -> ( x = y /\ ph ) ) ) | 
						
							| 5 |  | olc |  |-  ( ( x = y /\ ph ) -> ( A. x ( x = y -> ph ) \/ ( x = y /\ ph ) ) ) | 
						
							| 6 | 1 4 5 | syl56 |  |-  ( A. x x = y -> ( ( ( x = y -> ph ) /\ E. x ( x = y /\ ph ) ) -> ( A. x ( x = y -> ph ) \/ ( x = y /\ ph ) ) ) ) | 
						
							| 7 |  | simpr |  |-  ( ( ( x = y -> ph ) /\ E. x ( x = y /\ ph ) ) -> E. x ( x = y /\ ph ) ) | 
						
							| 8 |  | equs5 |  |-  ( -. A. x x = y -> ( E. x ( x = y /\ ph ) <-> A. x ( x = y -> ph ) ) ) | 
						
							| 9 | 8 | biimpd |  |-  ( -. A. x x = y -> ( E. x ( x = y /\ ph ) -> A. x ( x = y -> ph ) ) ) | 
						
							| 10 |  | orc |  |-  ( A. x ( x = y -> ph ) -> ( A. x ( x = y -> ph ) \/ ( x = y /\ ph ) ) ) | 
						
							| 11 | 7 9 10 | syl56 |  |-  ( -. A. x x = y -> ( ( ( x = y -> ph ) /\ E. x ( x = y /\ ph ) ) -> ( A. x ( x = y -> ph ) \/ ( x = y /\ ph ) ) ) ) | 
						
							| 12 | 6 11 | pm2.61i |  |-  ( ( ( x = y -> ph ) /\ E. x ( x = y /\ ph ) ) -> ( A. x ( x = y -> ph ) \/ ( x = y /\ ph ) ) ) | 
						
							| 13 |  | sp |  |-  ( A. x ( x = y -> ph ) -> ( x = y -> ph ) ) | 
						
							| 14 |  | pm3.4 |  |-  ( ( x = y /\ ph ) -> ( x = y -> ph ) ) | 
						
							| 15 | 13 14 | jaoi |  |-  ( ( A. x ( x = y -> ph ) \/ ( x = y /\ ph ) ) -> ( x = y -> ph ) ) | 
						
							| 16 |  | equs4 |  |-  ( A. x ( x = y -> ph ) -> E. x ( x = y /\ ph ) ) | 
						
							| 17 |  | 19.8a |  |-  ( ( x = y /\ ph ) -> E. x ( x = y /\ ph ) ) | 
						
							| 18 | 16 17 | jaoi |  |-  ( ( A. x ( x = y -> ph ) \/ ( x = y /\ ph ) ) -> E. x ( x = y /\ ph ) ) | 
						
							| 19 | 15 18 | jca |  |-  ( ( A. x ( x = y -> ph ) \/ ( x = y /\ ph ) ) -> ( ( x = y -> ph ) /\ E. x ( x = y /\ ph ) ) ) | 
						
							| 20 | 12 19 | impbii |  |-  ( ( ( x = y -> ph ) /\ E. x ( x = y /\ ph ) ) <-> ( A. x ( x = y -> ph ) \/ ( x = y /\ ph ) ) ) |