Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
|- ( ( ( x = y -> ph ) /\ E. x ( x = y /\ ph ) ) -> ( x = y -> ph ) ) |
2 |
|
pm2.27 |
|- ( x = y -> ( ( x = y -> ph ) -> ph ) ) |
3 |
2
|
anc2li |
|- ( x = y -> ( ( x = y -> ph ) -> ( x = y /\ ph ) ) ) |
4 |
3
|
sps |
|- ( A. x x = y -> ( ( x = y -> ph ) -> ( x = y /\ ph ) ) ) |
5 |
|
olc |
|- ( ( x = y /\ ph ) -> ( A. x ( x = y -> ph ) \/ ( x = y /\ ph ) ) ) |
6 |
1 4 5
|
syl56 |
|- ( A. x x = y -> ( ( ( x = y -> ph ) /\ E. x ( x = y /\ ph ) ) -> ( A. x ( x = y -> ph ) \/ ( x = y /\ ph ) ) ) ) |
7 |
|
simpr |
|- ( ( ( x = y -> ph ) /\ E. x ( x = y /\ ph ) ) -> E. x ( x = y /\ ph ) ) |
8 |
|
equs5 |
|- ( -. A. x x = y -> ( E. x ( x = y /\ ph ) <-> A. x ( x = y -> ph ) ) ) |
9 |
8
|
biimpd |
|- ( -. A. x x = y -> ( E. x ( x = y /\ ph ) -> A. x ( x = y -> ph ) ) ) |
10 |
|
orc |
|- ( A. x ( x = y -> ph ) -> ( A. x ( x = y -> ph ) \/ ( x = y /\ ph ) ) ) |
11 |
7 9 10
|
syl56 |
|- ( -. A. x x = y -> ( ( ( x = y -> ph ) /\ E. x ( x = y /\ ph ) ) -> ( A. x ( x = y -> ph ) \/ ( x = y /\ ph ) ) ) ) |
12 |
6 11
|
pm2.61i |
|- ( ( ( x = y -> ph ) /\ E. x ( x = y /\ ph ) ) -> ( A. x ( x = y -> ph ) \/ ( x = y /\ ph ) ) ) |
13 |
|
sp |
|- ( A. x ( x = y -> ph ) -> ( x = y -> ph ) ) |
14 |
|
pm3.4 |
|- ( ( x = y /\ ph ) -> ( x = y -> ph ) ) |
15 |
13 14
|
jaoi |
|- ( ( A. x ( x = y -> ph ) \/ ( x = y /\ ph ) ) -> ( x = y -> ph ) ) |
16 |
|
equs4 |
|- ( A. x ( x = y -> ph ) -> E. x ( x = y /\ ph ) ) |
17 |
|
19.8a |
|- ( ( x = y /\ ph ) -> E. x ( x = y /\ ph ) ) |
18 |
16 17
|
jaoi |
|- ( ( A. x ( x = y -> ph ) \/ ( x = y /\ ph ) ) -> E. x ( x = y /\ ph ) ) |
19 |
15 18
|
jca |
|- ( ( A. x ( x = y -> ph ) \/ ( x = y /\ ph ) ) -> ( ( x = y -> ph ) /\ E. x ( x = y /\ ph ) ) ) |
20 |
12 19
|
impbii |
|- ( ( ( x = y -> ph ) /\ E. x ( x = y /\ ph ) ) <-> ( A. x ( x = y -> ph ) \/ ( x = y /\ ph ) ) ) |