| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl | ⊢ ( ( ( 𝑥  =  𝑦  →  𝜑 )  ∧  ∃ 𝑥 ( 𝑥  =  𝑦  ∧  𝜑 ) )  →  ( 𝑥  =  𝑦  →  𝜑 ) ) | 
						
							| 2 |  | pm2.27 | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑥  =  𝑦  →  𝜑 )  →  𝜑 ) ) | 
						
							| 3 | 2 | anc2li | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑥  =  𝑦  →  𝜑 )  →  ( 𝑥  =  𝑦  ∧  𝜑 ) ) ) | 
						
							| 4 | 3 | sps | ⊢ ( ∀ 𝑥 𝑥  =  𝑦  →  ( ( 𝑥  =  𝑦  →  𝜑 )  →  ( 𝑥  =  𝑦  ∧  𝜑 ) ) ) | 
						
							| 5 |  | olc | ⊢ ( ( 𝑥  =  𝑦  ∧  𝜑 )  →  ( ∀ 𝑥 ( 𝑥  =  𝑦  →  𝜑 )  ∨  ( 𝑥  =  𝑦  ∧  𝜑 ) ) ) | 
						
							| 6 | 1 4 5 | syl56 | ⊢ ( ∀ 𝑥 𝑥  =  𝑦  →  ( ( ( 𝑥  =  𝑦  →  𝜑 )  ∧  ∃ 𝑥 ( 𝑥  =  𝑦  ∧  𝜑 ) )  →  ( ∀ 𝑥 ( 𝑥  =  𝑦  →  𝜑 )  ∨  ( 𝑥  =  𝑦  ∧  𝜑 ) ) ) ) | 
						
							| 7 |  | simpr | ⊢ ( ( ( 𝑥  =  𝑦  →  𝜑 )  ∧  ∃ 𝑥 ( 𝑥  =  𝑦  ∧  𝜑 ) )  →  ∃ 𝑥 ( 𝑥  =  𝑦  ∧  𝜑 ) ) | 
						
							| 8 |  | equs5 | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  ( ∃ 𝑥 ( 𝑥  =  𝑦  ∧  𝜑 )  ↔  ∀ 𝑥 ( 𝑥  =  𝑦  →  𝜑 ) ) ) | 
						
							| 9 | 8 | biimpd | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  ( ∃ 𝑥 ( 𝑥  =  𝑦  ∧  𝜑 )  →  ∀ 𝑥 ( 𝑥  =  𝑦  →  𝜑 ) ) ) | 
						
							| 10 |  | orc | ⊢ ( ∀ 𝑥 ( 𝑥  =  𝑦  →  𝜑 )  →  ( ∀ 𝑥 ( 𝑥  =  𝑦  →  𝜑 )  ∨  ( 𝑥  =  𝑦  ∧  𝜑 ) ) ) | 
						
							| 11 | 7 9 10 | syl56 | ⊢ ( ¬  ∀ 𝑥 𝑥  =  𝑦  →  ( ( ( 𝑥  =  𝑦  →  𝜑 )  ∧  ∃ 𝑥 ( 𝑥  =  𝑦  ∧  𝜑 ) )  →  ( ∀ 𝑥 ( 𝑥  =  𝑦  →  𝜑 )  ∨  ( 𝑥  =  𝑦  ∧  𝜑 ) ) ) ) | 
						
							| 12 | 6 11 | pm2.61i | ⊢ ( ( ( 𝑥  =  𝑦  →  𝜑 )  ∧  ∃ 𝑥 ( 𝑥  =  𝑦  ∧  𝜑 ) )  →  ( ∀ 𝑥 ( 𝑥  =  𝑦  →  𝜑 )  ∨  ( 𝑥  =  𝑦  ∧  𝜑 ) ) ) | 
						
							| 13 |  | sp | ⊢ ( ∀ 𝑥 ( 𝑥  =  𝑦  →  𝜑 )  →  ( 𝑥  =  𝑦  →  𝜑 ) ) | 
						
							| 14 |  | pm3.4 | ⊢ ( ( 𝑥  =  𝑦  ∧  𝜑 )  →  ( 𝑥  =  𝑦  →  𝜑 ) ) | 
						
							| 15 | 13 14 | jaoi | ⊢ ( ( ∀ 𝑥 ( 𝑥  =  𝑦  →  𝜑 )  ∨  ( 𝑥  =  𝑦  ∧  𝜑 ) )  →  ( 𝑥  =  𝑦  →  𝜑 ) ) | 
						
							| 16 |  | equs4 | ⊢ ( ∀ 𝑥 ( 𝑥  =  𝑦  →  𝜑 )  →  ∃ 𝑥 ( 𝑥  =  𝑦  ∧  𝜑 ) ) | 
						
							| 17 |  | 19.8a | ⊢ ( ( 𝑥  =  𝑦  ∧  𝜑 )  →  ∃ 𝑥 ( 𝑥  =  𝑦  ∧  𝜑 ) ) | 
						
							| 18 | 16 17 | jaoi | ⊢ ( ( ∀ 𝑥 ( 𝑥  =  𝑦  →  𝜑 )  ∨  ( 𝑥  =  𝑦  ∧  𝜑 ) )  →  ∃ 𝑥 ( 𝑥  =  𝑦  ∧  𝜑 ) ) | 
						
							| 19 | 15 18 | jca | ⊢ ( ( ∀ 𝑥 ( 𝑥  =  𝑦  →  𝜑 )  ∨  ( 𝑥  =  𝑦  ∧  𝜑 ) )  →  ( ( 𝑥  =  𝑦  →  𝜑 )  ∧  ∃ 𝑥 ( 𝑥  =  𝑦  ∧  𝜑 ) ) ) | 
						
							| 20 | 12 19 | impbii | ⊢ ( ( ( 𝑥  =  𝑦  →  𝜑 )  ∧  ∃ 𝑥 ( 𝑥  =  𝑦  ∧  𝜑 ) )  ↔  ( ∀ 𝑥 ( 𝑥  =  𝑦  →  𝜑 )  ∨  ( 𝑥  =  𝑦  ∧  𝜑 ) ) ) |