Metamath Proof Explorer


Theorem bj-inftyexpitaufo

Description: The function inftyexpitau written as a surjection with domain and range. (Contributed by BJ, 4-Feb-2023)

Ref Expression
Assertion bj-inftyexpitaufo +∞e : ℝ –onto→ ℂ∞N

Proof

Step Hyp Ref Expression
1 opex ⟨ ( {R ‘ ( 1st𝑥 ) ) , { R } ⟩ ∈ V
2 df-bj-inftyexpitau +∞e = ( 𝑥 ∈ ℝ ↦ ⟨ ( {R ‘ ( 1st𝑥 ) ) , { R } ⟩ )
3 1 2 fnmpti +∞e Fn ℝ
4 dffn4 ( +∞e Fn ℝ ↔ +∞e : ℝ –onto→ ran +∞e )
5 3 4 mpbi +∞e : ℝ –onto→ ran +∞e
6 df-bj-ccinftyN ∞N = ran +∞e
7 6 eqcomi ran +∞e = ℂ∞N
8 foeq3 ( ran +∞e = ℂ∞N → ( +∞e : ℝ –onto→ ran +∞e ↔ +∞e : ℝ –onto→ ℂ∞N ) )
9 7 8 ax-mp ( +∞e : ℝ –onto→ ran +∞e ↔ +∞e : ℝ –onto→ ℂ∞N )
10 5 9 mpbi +∞e : ℝ –onto→ ℂ∞N