| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opex |
⊢ 〈 ( {R ‘ ( 1st ‘ 𝑥 ) ) , { R } 〉 ∈ V |
| 2 |
|
df-bj-inftyexpitau |
⊢ +∞eiτ = ( 𝑥 ∈ ℝ ↦ 〈 ( {R ‘ ( 1st ‘ 𝑥 ) ) , { R } 〉 ) |
| 3 |
1 2
|
fnmpti |
⊢ +∞eiτ Fn ℝ |
| 4 |
|
dffn4 |
⊢ ( +∞eiτ Fn ℝ ↔ +∞eiτ : ℝ –onto→ ran +∞eiτ ) |
| 5 |
3 4
|
mpbi |
⊢ +∞eiτ : ℝ –onto→ ran +∞eiτ |
| 6 |
|
df-bj-ccinftyN |
⊢ ℂ∞N = ran +∞eiτ |
| 7 |
6
|
eqcomi |
⊢ ran +∞eiτ = ℂ∞N |
| 8 |
|
foeq3 |
⊢ ( ran +∞eiτ = ℂ∞N → ( +∞eiτ : ℝ –onto→ ran +∞eiτ ↔ +∞eiτ : ℝ –onto→ ℂ∞N ) ) |
| 9 |
7 8
|
ax-mp |
⊢ ( +∞eiτ : ℝ –onto→ ran +∞eiτ ↔ +∞eiτ : ℝ –onto→ ℂ∞N ) |
| 10 |
5 9
|
mpbi |
⊢ +∞eiτ : ℝ –onto→ ℂ∞N |