| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opex |
|- <. ( {R ` ( 1st ` x ) ) , { R. } >. e. _V |
| 2 |
|
df-bj-inftyexpitau |
|- inftyexpitau = ( x e. RR |-> <. ( {R ` ( 1st ` x ) ) , { R. } >. ) |
| 3 |
1 2
|
fnmpti |
|- inftyexpitau Fn RR |
| 4 |
|
dffn4 |
|- ( inftyexpitau Fn RR <-> inftyexpitau : RR -onto-> ran inftyexpitau ) |
| 5 |
3 4
|
mpbi |
|- inftyexpitau : RR -onto-> ran inftyexpitau |
| 6 |
|
df-bj-ccinftyN |
|- CCinftyN = ran inftyexpitau |
| 7 |
6
|
eqcomi |
|- ran inftyexpitau = CCinftyN |
| 8 |
|
foeq3 |
|- ( ran inftyexpitau = CCinftyN -> ( inftyexpitau : RR -onto-> ran inftyexpitau <-> inftyexpitau : RR -onto-> CCinftyN ) ) |
| 9 |
7 8
|
ax-mp |
|- ( inftyexpitau : RR -onto-> ran inftyexpitau <-> inftyexpitau : RR -onto-> CCinftyN ) |
| 10 |
5 9
|
mpbi |
|- inftyexpitau : RR -onto-> CCinftyN |