Description: Generalization of dfrab3ss , which it may shorten. (Contributed by BJ, 21-Apr-2019) (Revised by OpenAI, 7-Jul-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bj-inrab3 | ⊢ ( 𝐴 ∩ { 𝑥 ∈ 𝐵 ∣ 𝜑 } ) = ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∩ 𝐵 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dfrab3 | ⊢ { 𝑥 ∈ 𝐵 ∣ 𝜑 } = ( 𝐵 ∩ { 𝑥 ∣ 𝜑 } ) | |
| 2 | 1 | ineq2i | ⊢ ( 𝐴 ∩ { 𝑥 ∈ 𝐵 ∣ 𝜑 } ) = ( 𝐴 ∩ ( 𝐵 ∩ { 𝑥 ∣ 𝜑 } ) ) | 
| 3 | dfrab3 | ⊢ { 𝑥 ∈ 𝐴 ∣ 𝜑 } = ( 𝐴 ∩ { 𝑥 ∣ 𝜑 } ) | |
| 4 | 3 | ineq2i | ⊢ ( 𝐵 ∩ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ) = ( 𝐵 ∩ ( 𝐴 ∩ { 𝑥 ∣ 𝜑 } ) ) | 
| 5 | incom | ⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∩ 𝐵 ) = ( 𝐵 ∩ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ) | |
| 6 | in12 | ⊢ ( 𝐴 ∩ ( 𝐵 ∩ { 𝑥 ∣ 𝜑 } ) ) = ( 𝐵 ∩ ( 𝐴 ∩ { 𝑥 ∣ 𝜑 } ) ) | |
| 7 | 4 5 6 | 3eqtr4i | ⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∩ 𝐵 ) = ( 𝐴 ∩ ( 𝐵 ∩ { 𝑥 ∣ 𝜑 } ) ) | 
| 8 | 2 7 | eqtr4i | ⊢ ( 𝐴 ∩ { 𝑥 ∈ 𝐵 ∣ 𝜑 } ) = ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ∩ 𝐵 ) |