| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfrab3 |  |-  { x e. B | ph } = ( B i^i { x | ph } ) | 
						
							| 2 | 1 | ineq2i |  |-  ( A i^i { x e. B | ph } ) = ( A i^i ( B i^i { x | ph } ) ) | 
						
							| 3 |  | dfrab3 |  |-  { x e. A | ph } = ( A i^i { x | ph } ) | 
						
							| 4 | 3 | ineq2i |  |-  ( B i^i { x e. A | ph } ) = ( B i^i ( A i^i { x | ph } ) ) | 
						
							| 5 |  | incom |  |-  ( { x e. A | ph } i^i B ) = ( B i^i { x e. A | ph } ) | 
						
							| 6 |  | in12 |  |-  ( A i^i ( B i^i { x | ph } ) ) = ( B i^i ( A i^i { x | ph } ) ) | 
						
							| 7 | 4 5 6 | 3eqtr4i |  |-  ( { x e. A | ph } i^i B ) = ( A i^i ( B i^i { x | ph } ) ) | 
						
							| 8 | 2 7 | eqtr4i |  |-  ( A i^i { x e. B | ph } ) = ( { x e. A | ph } i^i B ) |