Metamath Proof Explorer


Theorem bj-jaoi1

Description: Shortens orfa2 (58>53), pm1.2 (20>18), pm1.2 (20>18), pm2.4 (31>25), pm2.41 (31>25), pm2.42 (38>32), pm3.2ni (43>39), pm4.44 (55>51). (Contributed by BJ, 30-Sep-2019)

Ref Expression
Hypothesis bj-jaoi1.1 ( 𝜑𝜓 )
Assertion bj-jaoi1 ( ( 𝜑𝜓 ) → 𝜓 )

Proof

Step Hyp Ref Expression
1 bj-jaoi1.1 ( 𝜑𝜓 )
2 id ( 𝜓𝜓 )
3 1 2 jaoi ( ( 𝜑𝜓 ) → 𝜓 )