Metamath Proof Explorer


Theorem bj-nfald

Description: Variant of nfald . (Contributed by BJ, 25-Dec-2023)

Ref Expression
Hypotheses bj-nfald.1 ( 𝜑 → ∀ 𝑦 𝜑 )
bj-nfald.2 ( 𝜑 → Ⅎ 𝑥 𝜓 )
Assertion bj-nfald ( 𝜑 → Ⅎ 𝑥𝑦 𝜓 )

Proof

Step Hyp Ref Expression
1 bj-nfald.1 ( 𝜑 → ∀ 𝑦 𝜑 )
2 bj-nfald.2 ( 𝜑 → Ⅎ 𝑥 𝜓 )
3 19.12 ( ∃ 𝑥𝑦 𝜓 → ∀ 𝑦𝑥 𝜓 )
4 2 nfrd ( 𝜑 → ( ∃ 𝑥 𝜓 → ∀ 𝑥 𝜓 ) )
5 1 4 alimdh ( 𝜑 → ( ∀ 𝑦𝑥 𝜓 → ∀ 𝑦𝑥 𝜓 ) )
6 ax-11 ( ∀ 𝑦𝑥 𝜓 → ∀ 𝑥𝑦 𝜓 )
7 3 5 6 syl56 ( 𝜑 → ( ∃ 𝑥𝑦 𝜓 → ∀ 𝑥𝑦 𝜓 ) )
8 7 nfd ( 𝜑 → Ⅎ 𝑥𝑦 𝜓 )