Description: Variant of nfald . (Contributed by BJ, 25-Dec-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | bj-nfald.1 | ⊢ ( 𝜑 → ∀ 𝑦 𝜑 ) | |
bj-nfald.2 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝜓 ) | ||
Assertion | bj-nfald | ⊢ ( 𝜑 → Ⅎ 𝑥 ∀ 𝑦 𝜓 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-nfald.1 | ⊢ ( 𝜑 → ∀ 𝑦 𝜑 ) | |
2 | bj-nfald.2 | ⊢ ( 𝜑 → Ⅎ 𝑥 𝜓 ) | |
3 | 19.12 | ⊢ ( ∃ 𝑥 ∀ 𝑦 𝜓 → ∀ 𝑦 ∃ 𝑥 𝜓 ) | |
4 | 2 | nfrd | ⊢ ( 𝜑 → ( ∃ 𝑥 𝜓 → ∀ 𝑥 𝜓 ) ) |
5 | 1 4 | alimdh | ⊢ ( 𝜑 → ( ∀ 𝑦 ∃ 𝑥 𝜓 → ∀ 𝑦 ∀ 𝑥 𝜓 ) ) |
6 | ax-11 | ⊢ ( ∀ 𝑦 ∀ 𝑥 𝜓 → ∀ 𝑥 ∀ 𝑦 𝜓 ) | |
7 | 3 5 6 | syl56 | ⊢ ( 𝜑 → ( ∃ 𝑥 ∀ 𝑦 𝜓 → ∀ 𝑥 ∀ 𝑦 𝜓 ) ) |
8 | 7 | nfd | ⊢ ( 𝜑 → Ⅎ 𝑥 ∀ 𝑦 𝜓 ) |