Metamath Proof Explorer
Description: Variant of nfexd . (Contributed by BJ, 25-Dec-2023)
|
|
Ref |
Expression |
|
Hypotheses |
bj-nfald.1 |
⊢ ( 𝜑 → ∀ 𝑦 𝜑 ) |
|
|
bj-nfald.2 |
⊢ ( 𝜑 → Ⅎ 𝑥 𝜓 ) |
|
Assertion |
bj-nfexd |
⊢ ( 𝜑 → Ⅎ 𝑥 ∃ 𝑦 𝜓 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bj-nfald.1 |
⊢ ( 𝜑 → ∀ 𝑦 𝜑 ) |
| 2 |
|
bj-nfald.2 |
⊢ ( 𝜑 → Ⅎ 𝑥 𝜓 ) |
| 3 |
|
df-ex |
⊢ ( ∃ 𝑦 𝜓 ↔ ¬ ∀ 𝑦 ¬ 𝜓 ) |
| 4 |
2
|
nfnd |
⊢ ( 𝜑 → Ⅎ 𝑥 ¬ 𝜓 ) |
| 5 |
1 4
|
bj-nfald |
⊢ ( 𝜑 → Ⅎ 𝑥 ∀ 𝑦 ¬ 𝜓 ) |
| 6 |
5
|
nfnd |
⊢ ( 𝜑 → Ⅎ 𝑥 ¬ ∀ 𝑦 ¬ 𝜓 ) |
| 7 |
3 6
|
nfxfrd |
⊢ ( 𝜑 → Ⅎ 𝑥 ∃ 𝑦 𝜓 ) |