Metamath Proof Explorer
		
		
		
		Description:  Variant of nfexd .  (Contributed by BJ, 25-Dec-2023)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | bj-nfald.1 | ⊢ ( 𝜑  →  ∀ 𝑦 𝜑 ) | 
					
						|  |  | bj-nfald.2 | ⊢ ( 𝜑  →  Ⅎ 𝑥 𝜓 ) | 
				
					|  | Assertion | bj-nfexd | ⊢  ( 𝜑  →  Ⅎ 𝑥 ∃ 𝑦 𝜓 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | bj-nfald.1 | ⊢ ( 𝜑  →  ∀ 𝑦 𝜑 ) | 
						
							| 2 |  | bj-nfald.2 | ⊢ ( 𝜑  →  Ⅎ 𝑥 𝜓 ) | 
						
							| 3 |  | df-ex | ⊢ ( ∃ 𝑦 𝜓  ↔  ¬  ∀ 𝑦 ¬  𝜓 ) | 
						
							| 4 | 2 | nfnd | ⊢ ( 𝜑  →  Ⅎ 𝑥 ¬  𝜓 ) | 
						
							| 5 | 1 4 | bj-nfald | ⊢ ( 𝜑  →  Ⅎ 𝑥 ∀ 𝑦 ¬  𝜓 ) | 
						
							| 6 | 5 | nfnd | ⊢ ( 𝜑  →  Ⅎ 𝑥 ¬  ∀ 𝑦 ¬  𝜓 ) | 
						
							| 7 | 3 6 | nfxfrd | ⊢ ( 𝜑  →  Ⅎ 𝑥 ∃ 𝑦 𝜓 ) |