Metamath Proof Explorer


Theorem bj-nfexd

Description: Variant of nfexd . (Contributed by BJ, 25-Dec-2023)

Ref Expression
Hypotheses bj-nfald.1
|- ( ph -> A. y ph )
bj-nfald.2
|- ( ph -> F/ x ps )
Assertion bj-nfexd
|- ( ph -> F/ x E. y ps )

Proof

Step Hyp Ref Expression
1 bj-nfald.1
 |-  ( ph -> A. y ph )
2 bj-nfald.2
 |-  ( ph -> F/ x ps )
3 df-ex
 |-  ( E. y ps <-> -. A. y -. ps )
4 2 nfnd
 |-  ( ph -> F/ x -. ps )
5 1 4 bj-nfald
 |-  ( ph -> F/ x A. y -. ps )
6 5 nfnd
 |-  ( ph -> F/ x -. A. y -. ps )
7 3 6 nfxfrd
 |-  ( ph -> F/ x E. y ps )