Metamath Proof Explorer


Theorem bj-opelidb1

Description: Characterization of the ordered pair elements of the identity relation. Variant of bj-opelidb where only the sethood of the first component is expressed. (Contributed by BJ, 27-Dec-2023)

Ref Expression
Assertion bj-opelidb1 ( ⟨ 𝐴 , 𝐵 ⟩ ∈ I ↔ ( 𝐴 ∈ V ∧ 𝐴 = 𝐵 ) )

Proof

Step Hyp Ref Expression
1 an32 ( ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ 𝐴 = 𝐵 ) ↔ ( ( 𝐴 ∈ V ∧ 𝐴 = 𝐵 ) ∧ 𝐵 ∈ V ) )
2 bj-opelidb ( ⟨ 𝐴 , 𝐵 ⟩ ∈ I ↔ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) ∧ 𝐴 = 𝐵 ) )
3 eleq1 ( 𝐴 = 𝐵 → ( 𝐴 ∈ V ↔ 𝐵 ∈ V ) )
4 3 biimpac ( ( 𝐴 ∈ V ∧ 𝐴 = 𝐵 ) → 𝐵 ∈ V )
5 4 pm4.71i ( ( 𝐴 ∈ V ∧ 𝐴 = 𝐵 ) ↔ ( ( 𝐴 ∈ V ∧ 𝐴 = 𝐵 ) ∧ 𝐵 ∈ V ) )
6 1 2 5 3bitr4i ( ⟨ 𝐴 , 𝐵 ⟩ ∈ I ↔ ( 𝐴 ∈ V ∧ 𝐴 = 𝐵 ) )