Metamath Proof Explorer


Theorem bj-opelidb1

Description: Characterization of the ordered pair elements of the identity relation. Variant of bj-opelidb where only the sethood of the first component is expressed. (Contributed by BJ, 27-Dec-2023)

Ref Expression
Assertion bj-opelidb1
|- ( <. A , B >. e. _I <-> ( A e. _V /\ A = B ) )

Proof

Step Hyp Ref Expression
1 an32
 |-  ( ( ( A e. _V /\ B e. _V ) /\ A = B ) <-> ( ( A e. _V /\ A = B ) /\ B e. _V ) )
2 bj-opelidb
 |-  ( <. A , B >. e. _I <-> ( ( A e. _V /\ B e. _V ) /\ A = B ) )
3 eleq1
 |-  ( A = B -> ( A e. _V <-> B e. _V ) )
4 3 biimpac
 |-  ( ( A e. _V /\ A = B ) -> B e. _V )
5 4 pm4.71i
 |-  ( ( A e. _V /\ A = B ) <-> ( ( A e. _V /\ A = B ) /\ B e. _V ) )
6 1 2 5 3bitr4i
 |-  ( <. A , B >. e. _I <-> ( A e. _V /\ A = B ) )