Metamath Proof Explorer


Theorem bj-ralvw

Description: A weak version of ralv not using ax-ext (nor df-cleq , df-clel , df-v ), and only core FOL axioms. See also bj-rexvw . The analogues for reuv and rmov are not proved. (Contributed by BJ, 16-Jun-2019) (Proof modification is discouraged.)

Ref Expression
Hypothesis bj-ralvw.1 𝜓
Assertion bj-ralvw ( ∀ 𝑥 ∈ { 𝑦𝜓 } 𝜑 ↔ ∀ 𝑥 𝜑 )

Proof

Step Hyp Ref Expression
1 bj-ralvw.1 𝜓
2 df-ral ( ∀ 𝑥 ∈ { 𝑦𝜓 } 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ { 𝑦𝜓 } → 𝜑 ) )
3 1 vexw 𝑥 ∈ { 𝑦𝜓 }
4 3 a1bi ( 𝜑 ↔ ( 𝑥 ∈ { 𝑦𝜓 } → 𝜑 ) )
5 4 albii ( ∀ 𝑥 𝜑 ↔ ∀ 𝑥 ( 𝑥 ∈ { 𝑦𝜓 } → 𝜑 ) )
6 2 5 bitr4i ( ∀ 𝑥 ∈ { 𝑦𝜓 } 𝜑 ↔ ∀ 𝑥 𝜑 )