Metamath Proof Explorer


Theorem bj-rexvw

Description: A weak version of rexv not using ax-ext (nor df-cleq , df-clel , df-v ), and only core FOL axioms. See also bj-ralvw . (Contributed by BJ, 16-Jun-2019) (Proof modification is discouraged.)

Ref Expression
Hypothesis bj-rexvw.1 𝜓
Assertion bj-rexvw ( ∃ 𝑥 ∈ { 𝑦𝜓 } 𝜑 ↔ ∃ 𝑥 𝜑 )

Proof

Step Hyp Ref Expression
1 bj-rexvw.1 𝜓
2 df-rex ( ∃ 𝑥 ∈ { 𝑦𝜓 } 𝜑 ↔ ∃ 𝑥 ( 𝑥 ∈ { 𝑦𝜓 } ∧ 𝜑 ) )
3 1 vexw 𝑥 ∈ { 𝑦𝜓 }
4 3 biantrur ( 𝜑 ↔ ( 𝑥 ∈ { 𝑦𝜓 } ∧ 𝜑 ) )
5 4 exbii ( ∃ 𝑥 𝜑 ↔ ∃ 𝑥 ( 𝑥 ∈ { 𝑦𝜓 } ∧ 𝜑 ) )
6 2 5 bitr4i ( ∃ 𝑥 ∈ { 𝑦𝜓 } 𝜑 ↔ ∃ 𝑥 𝜑 )