Description: A weak version of rabab not using df-clel nor df-v (but requiring ax-ext ) nor ax-12 . (Contributed by BJ, 16-Jun-2019) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | bj-rababw.1 | ⊢ 𝜓 | |
| Assertion | bj-rababw | ⊢ { 𝑥 ∈ { 𝑦 ∣ 𝜓 } ∣ 𝜑 } = { 𝑥 ∣ 𝜑 } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-rababw.1 | ⊢ 𝜓 | |
| 2 | df-rab | ⊢ { 𝑥 ∈ { 𝑦 ∣ 𝜓 } ∣ 𝜑 } = { 𝑥 ∣ ( 𝑥 ∈ { 𝑦 ∣ 𝜓 } ∧ 𝜑 ) } | |
| 3 | 1 | vexw | ⊢ 𝑥 ∈ { 𝑦 ∣ 𝜓 } |
| 4 | 3 | biantrur | ⊢ ( 𝜑 ↔ ( 𝑥 ∈ { 𝑦 ∣ 𝜓 } ∧ 𝜑 ) ) |
| 5 | 4 | abbii | ⊢ { 𝑥 ∣ 𝜑 } = { 𝑥 ∣ ( 𝑥 ∈ { 𝑦 ∣ 𝜓 } ∧ 𝜑 ) } |
| 6 | 2 5 | eqtr4i | ⊢ { 𝑥 ∈ { 𝑦 ∣ 𝜓 } ∣ 𝜑 } = { 𝑥 ∣ 𝜑 } |