Metamath Proof Explorer


Theorem bj-rababw

Description: A weak version of rabab not using df-clel nor df-v (but requiring ax-ext ) nor ax-12 . (Contributed by BJ, 16-Jun-2019) (Proof modification is discouraged.)

Ref Expression
Hypothesis bj-rababw.1 𝜓
Assertion bj-rababw { 𝑥 ∈ { 𝑦𝜓 } ∣ 𝜑 } = { 𝑥𝜑 }

Proof

Step Hyp Ref Expression
1 bj-rababw.1 𝜓
2 df-rab { 𝑥 ∈ { 𝑦𝜓 } ∣ 𝜑 } = { 𝑥 ∣ ( 𝑥 ∈ { 𝑦𝜓 } ∧ 𝜑 ) }
3 1 vexw 𝑥 ∈ { 𝑦𝜓 }
4 3 biantrur ( 𝜑 ↔ ( 𝑥 ∈ { 𝑦𝜓 } ∧ 𝜑 ) )
5 4 abbii { 𝑥𝜑 } = { 𝑥 ∣ ( 𝑥 ∈ { 𝑦𝜓 } ∧ 𝜑 ) }
6 2 5 eqtr4i { 𝑥 ∈ { 𝑦𝜓 } ∣ 𝜑 } = { 𝑥𝜑 }