Metamath Proof Explorer


Theorem bj-rababw

Description: A weak version of rabab not using df-clel nor df-v (but requiring ax-ext ) nor ax-12 . (Contributed by BJ, 16-Jun-2019) (Proof modification is discouraged.)

Ref Expression
Hypothesis bj-rababw.1
|- ps
Assertion bj-rababw
|- { x e. { y | ps } | ph } = { x | ph }

Proof

Step Hyp Ref Expression
1 bj-rababw.1
 |-  ps
2 df-rab
 |-  { x e. { y | ps } | ph } = { x | ( x e. { y | ps } /\ ph ) }
3 1 vexw
 |-  x e. { y | ps }
4 3 biantrur
 |-  ( ph <-> ( x e. { y | ps } /\ ph ) )
5 4 abbii
 |-  { x | ph } = { x | ( x e. { y | ps } /\ ph ) }
6 2 5 eqtr4i
 |-  { x e. { y | ps } | ph } = { x | ph }