Metamath Proof Explorer


Theorem bj-rexcom4bv

Description: Version of rexcom4b and bj-rexcom4b with a disjoint variable condition on x , V , hence removing dependency on df-sb and df-clab (so that it depends on df-clel and df-rex only on top of first-order logic). Prefer its use over bj-rexcom4b when sufficient (in particular when V is substituted for _V ). Note the V in the hypothesis instead of _V . (Contributed by BJ, 14-Sep-2019) (Proof modification is discouraged.)

Ref Expression
Hypothesis bj-rexcom4bv.1
|- B e. V
Assertion bj-rexcom4bv
|- ( E. x E. y e. A ( ph /\ x = B ) <-> E. y e. A ph )

Proof

Step Hyp Ref Expression
1 bj-rexcom4bv.1
 |-  B e. V
2 rexcom4a
 |-  ( E. x E. y e. A ( ph /\ x = B ) <-> E. y e. A ( ph /\ E. x x = B ) )
3 1 bj-issetiv
 |-  E. x x = B
4 3 biantru
 |-  ( ph <-> ( ph /\ E. x x = B ) )
5 4 rexbii
 |-  ( E. y e. A ph <-> E. y e. A ( ph /\ E. x x = B ) )
6 2 5 bitr4i
 |-  ( E. x E. y e. A ( ph /\ x = B ) <-> E. y e. A ph )