Metamath Proof Explorer


Theorem bj-rexcom4b

Description: Remove from rexcom4b dependency on ax-ext and ax-13 (and on df-or , df-cleq , df-nfc , df-v ). The hypothesis uses V instead of _V (see bj-isseti for the motivation). Use bj-rexcom4bv instead when sufficient (in particular when V is substituted for _V ). (Contributed by BJ, 16-Jun-2019) (Proof modification is discouraged.)

Ref Expression
Hypothesis bj-rexcom4b.1
|- B e. V
Assertion bj-rexcom4b
|- ( E. x E. y e. A ( ph /\ x = B ) <-> E. y e. A ph )

Proof

Step Hyp Ref Expression
1 bj-rexcom4b.1
 |-  B e. V
2 rexcom4a
 |-  ( E. x E. y e. A ( ph /\ x = B ) <-> E. y e. A ( ph /\ E. x x = B ) )
3 1 bj-isseti
 |-  E. x x = B
4 3 biantru
 |-  ( ph <-> ( ph /\ E. x x = B ) )
5 4 rexbii
 |-  ( E. y e. A ph <-> E. y e. A ( ph /\ E. x x = B ) )
6 2 5 bitr4i
 |-  ( E. x E. y e. A ( ph /\ x = B ) <-> E. y e. A ph )