Metamath Proof Explorer


Theorem bj-rexcom4b

Description: Remove from rexcom4b dependency on ax-ext and ax-13 (and on df-or , df-cleq , df-nfc , df-v ). The hypothesis uses V instead of _V (see bj-isseti for the motivation). Use bj-rexcom4bv instead when sufficient (in particular when V is substituted for _V ). (Contributed by BJ, 16-Jun-2019) (Proof modification is discouraged.)

Ref Expression
Hypothesis bj-rexcom4b.1 B V
Assertion bj-rexcom4b x y A φ x = B y A φ

Proof

Step Hyp Ref Expression
1 bj-rexcom4b.1 B V
2 rexcom4a x y A φ x = B y A φ x x = B
3 1 bj-isseti x x = B
4 3 biantru φ φ x x = B
5 4 rexbii y A φ y A φ x x = B
6 2 5 bitr4i x y A φ x = B y A φ