Metamath Proof Explorer


Theorem bj-rababw

Description: A weak version of rabab not using df-clel nor df-v (but requiring ax-ext ) nor ax-12 . (Contributed by BJ, 16-Jun-2019) (Proof modification is discouraged.)

Ref Expression
Hypothesis bj-rababw.1 ψ
Assertion bj-rababw x y | ψ | φ = x | φ

Proof

Step Hyp Ref Expression
1 bj-rababw.1 ψ
2 df-rab x y | ψ | φ = x | x y | ψ φ
3 1 vexw x y | ψ
4 3 biantrur φ x y | ψ φ
5 4 abbii x | φ = x | x y | ψ φ
6 2 5 eqtr4i x y | ψ | φ = x | φ