Metamath Proof Explorer


Theorem bj-rexvw

Description: A weak version of rexv not using ax-ext (nor df-cleq , df-clel , df-v ), and only core FOL axioms. See also bj-ralvw . (Contributed by BJ, 16-Jun-2019) (Proof modification is discouraged.)

Ref Expression
Hypothesis bj-rexvw.1
|- ps
Assertion bj-rexvw
|- ( E. x e. { y | ps } ph <-> E. x ph )

Proof

Step Hyp Ref Expression
1 bj-rexvw.1
 |-  ps
2 df-rex
 |-  ( E. x e. { y | ps } ph <-> E. x ( x e. { y | ps } /\ ph ) )
3 1 vexw
 |-  x e. { y | ps }
4 3 biantrur
 |-  ( ph <-> ( x e. { y | ps } /\ ph ) )
5 4 exbii
 |-  ( E. x ph <-> E. x ( x e. { y | ps } /\ ph ) )
6 2 5 bitr4i
 |-  ( E. x e. { y | ps } ph <-> E. x ph )