Step |
Hyp |
Ref |
Expression |
1 |
|
blf |
β’ ( π· β ( βMet β π ) β ( ball β π· ) : ( π Γ β* ) βΆ π« π ) |
2 |
|
ffn |
β’ ( ( ball β π· ) : ( π Γ β* ) βΆ π« π β ( ball β π· ) Fn ( π Γ β* ) ) |
3 |
|
ovelrn |
β’ ( ( ball β π· ) Fn ( π Γ β* ) β ( π΄ β ran ( ball β π· ) β β π₯ β π β π β β* π΄ = ( π₯ ( ball β π· ) π ) ) ) |
4 |
1 2 3
|
3syl |
β’ ( π· β ( βMet β π ) β ( π΄ β ran ( ball β π· ) β β π₯ β π β π β β* π΄ = ( π₯ ( ball β π· ) π ) ) ) |