Metamath Proof Explorer


Theorem blrn

Description: Membership in the range of the ball function. Note that ran ( ballD ) is the collection of all balls for metric D . (Contributed by NM, 31-Aug-2006) (Revised by Mario Carneiro, 12-Nov-2013)

Ref Expression
Assertion blrn ( 𝐷 ∈ ( ∞Met β€˜ 𝑋 ) β†’ ( 𝐴 ∈ ran ( ball β€˜ 𝐷 ) ↔ βˆƒ π‘₯ ∈ 𝑋 βˆƒ π‘Ÿ ∈ ℝ* 𝐴 = ( π‘₯ ( ball β€˜ 𝐷 ) π‘Ÿ ) ) )

Proof

Step Hyp Ref Expression
1 blf ⊒ ( 𝐷 ∈ ( ∞Met β€˜ 𝑋 ) β†’ ( ball β€˜ 𝐷 ) : ( 𝑋 Γ— ℝ* ) ⟢ 𝒫 𝑋 )
2 ffn ⊒ ( ( ball β€˜ 𝐷 ) : ( 𝑋 Γ— ℝ* ) ⟢ 𝒫 𝑋 β†’ ( ball β€˜ 𝐷 ) Fn ( 𝑋 Γ— ℝ* ) )
3 ovelrn ⊒ ( ( ball β€˜ 𝐷 ) Fn ( 𝑋 Γ— ℝ* ) β†’ ( 𝐴 ∈ ran ( ball β€˜ 𝐷 ) ↔ βˆƒ π‘₯ ∈ 𝑋 βˆƒ π‘Ÿ ∈ ℝ* 𝐴 = ( π‘₯ ( ball β€˜ 𝐷 ) π‘Ÿ ) ) )
4 1 2 3 3syl ⊒ ( 𝐷 ∈ ( ∞Met β€˜ 𝑋 ) β†’ ( 𝐴 ∈ ran ( ball β€˜ 𝐷 ) ↔ βˆƒ π‘₯ ∈ 𝑋 βˆƒ π‘Ÿ ∈ ℝ* 𝐴 = ( π‘₯ ( ball β€˜ 𝐷 ) π‘Ÿ ) ) )