Metamath Proof Explorer


Theorem blssec

Description: A ball centered at P is contained in the set of points finitely separated from P . This is just an application of ssbl to the infinity ball. (Contributed by Mario Carneiro, 24-Aug-2015)

Ref Expression
Hypothesis xmeter.1 = ( 𝐷 “ ℝ )
Assertion blssec ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃𝑋𝑆 ∈ ℝ* ) → ( 𝑃 ( ball ‘ 𝐷 ) 𝑆 ) ⊆ [ 𝑃 ] )

Proof

Step Hyp Ref Expression
1 xmeter.1 = ( 𝐷 “ ℝ )
2 pnfge ( 𝑆 ∈ ℝ*𝑆 ≤ +∞ )
3 2 adantl ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃𝑋 ) ∧ 𝑆 ∈ ℝ* ) → 𝑆 ≤ +∞ )
4 pnfxr +∞ ∈ ℝ*
5 ssbl ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃𝑋 ) ∧ ( 𝑆 ∈ ℝ* ∧ +∞ ∈ ℝ* ) ∧ 𝑆 ≤ +∞ ) → ( 𝑃 ( ball ‘ 𝐷 ) 𝑆 ) ⊆ ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) )
6 5 3expia ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃𝑋 ) ∧ ( 𝑆 ∈ ℝ* ∧ +∞ ∈ ℝ* ) ) → ( 𝑆 ≤ +∞ → ( 𝑃 ( ball ‘ 𝐷 ) 𝑆 ) ⊆ ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) ) )
7 4 6 mpanr2 ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃𝑋 ) ∧ 𝑆 ∈ ℝ* ) → ( 𝑆 ≤ +∞ → ( 𝑃 ( ball ‘ 𝐷 ) 𝑆 ) ⊆ ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) ) )
8 3 7 mpd ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃𝑋 ) ∧ 𝑆 ∈ ℝ* ) → ( 𝑃 ( ball ‘ 𝐷 ) 𝑆 ) ⊆ ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) )
9 8 3impa ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃𝑋𝑆 ∈ ℝ* ) → ( 𝑃 ( ball ‘ 𝐷 ) 𝑆 ) ⊆ ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) )
10 1 xmetec ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃𝑋 ) → [ 𝑃 ] = ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) )
11 10 3adant3 ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃𝑋𝑆 ∈ ℝ* ) → [ 𝑃 ] = ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) )
12 9 11 sseqtrrd ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃𝑋𝑆 ∈ ℝ* ) → ( 𝑃 ( ball ‘ 𝐷 ) 𝑆 ) ⊆ [ 𝑃 ] )