Metamath Proof Explorer


Theorem xmetec

Description: The equivalence classes under the finite separation equivalence relation are infinity balls. Thus, by erdisj , infinity balls are either identical or disjoint, quite unlike the usual situation with Euclidean balls which admit many kinds of overlap. (Contributed by Mario Carneiro, 24-Aug-2015)

Ref Expression
Hypothesis xmeter.1 = ( 𝐷 “ ℝ )
Assertion xmetec ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃𝑋 ) → [ 𝑃 ] = ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) )

Proof

Step Hyp Ref Expression
1 xmeter.1 = ( 𝐷 “ ℝ )
2 1 xmeterval ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑃 𝑥 ↔ ( 𝑃𝑋𝑥𝑋 ∧ ( 𝑃 𝐷 𝑥 ) ∈ ℝ ) ) )
3 3anass ( ( 𝑃𝑋𝑥𝑋 ∧ ( 𝑃 𝐷 𝑥 ) ∈ ℝ ) ↔ ( 𝑃𝑋 ∧ ( 𝑥𝑋 ∧ ( 𝑃 𝐷 𝑥 ) ∈ ℝ ) ) )
4 3 baib ( 𝑃𝑋 → ( ( 𝑃𝑋𝑥𝑋 ∧ ( 𝑃 𝐷 𝑥 ) ∈ ℝ ) ↔ ( 𝑥𝑋 ∧ ( 𝑃 𝐷 𝑥 ) ∈ ℝ ) ) )
5 2 4 sylan9bb ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃𝑋 ) → ( 𝑃 𝑥 ↔ ( 𝑥𝑋 ∧ ( 𝑃 𝐷 𝑥 ) ∈ ℝ ) ) )
6 vex 𝑥 ∈ V
7 6 a1i ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑥 ∈ V )
8 elecg ( ( 𝑥 ∈ V ∧ 𝑃𝑋 ) → ( 𝑥 ∈ [ 𝑃 ] 𝑃 𝑥 ) )
9 7 8 sylan ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃𝑋 ) → ( 𝑥 ∈ [ 𝑃 ] 𝑃 𝑥 ) )
10 xblpnf ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃𝑋 ) → ( 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) ↔ ( 𝑥𝑋 ∧ ( 𝑃 𝐷 𝑥 ) ∈ ℝ ) ) )
11 5 9 10 3bitr4d ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃𝑋 ) → ( 𝑥 ∈ [ 𝑃 ] 𝑥 ∈ ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) ) )
12 11 eqrdv ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃𝑋 ) → [ 𝑃 ] = ( 𝑃 ( ball ‘ 𝐷 ) +∞ ) )