| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xmeter.1 |
|- .~ = ( `' D " RR ) |
| 2 |
1
|
xmeterval |
|- ( D e. ( *Met ` X ) -> ( P .~ x <-> ( P e. X /\ x e. X /\ ( P D x ) e. RR ) ) ) |
| 3 |
|
3anass |
|- ( ( P e. X /\ x e. X /\ ( P D x ) e. RR ) <-> ( P e. X /\ ( x e. X /\ ( P D x ) e. RR ) ) ) |
| 4 |
3
|
baib |
|- ( P e. X -> ( ( P e. X /\ x e. X /\ ( P D x ) e. RR ) <-> ( x e. X /\ ( P D x ) e. RR ) ) ) |
| 5 |
2 4
|
sylan9bb |
|- ( ( D e. ( *Met ` X ) /\ P e. X ) -> ( P .~ x <-> ( x e. X /\ ( P D x ) e. RR ) ) ) |
| 6 |
|
vex |
|- x e. _V |
| 7 |
6
|
a1i |
|- ( D e. ( *Met ` X ) -> x e. _V ) |
| 8 |
|
elecg |
|- ( ( x e. _V /\ P e. X ) -> ( x e. [ P ] .~ <-> P .~ x ) ) |
| 9 |
7 8
|
sylan |
|- ( ( D e. ( *Met ` X ) /\ P e. X ) -> ( x e. [ P ] .~ <-> P .~ x ) ) |
| 10 |
|
xblpnf |
|- ( ( D e. ( *Met ` X ) /\ P e. X ) -> ( x e. ( P ( ball ` D ) +oo ) <-> ( x e. X /\ ( P D x ) e. RR ) ) ) |
| 11 |
5 9 10
|
3bitr4d |
|- ( ( D e. ( *Met ` X ) /\ P e. X ) -> ( x e. [ P ] .~ <-> x e. ( P ( ball ` D ) +oo ) ) ) |
| 12 |
11
|
eqrdv |
|- ( ( D e. ( *Met ` X ) /\ P e. X ) -> [ P ] .~ = ( P ( ball ` D ) +oo ) ) |