| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xmeter.1 |
|- .~ = ( `' D " RR ) |
| 2 |
|
xmetf |
|- ( D e. ( *Met ` X ) -> D : ( X X. X ) --> RR* ) |
| 3 |
|
ffn |
|- ( D : ( X X. X ) --> RR* -> D Fn ( X X. X ) ) |
| 4 |
|
elpreima |
|- ( D Fn ( X X. X ) -> ( <. A , B >. e. ( `' D " RR ) <-> ( <. A , B >. e. ( X X. X ) /\ ( D ` <. A , B >. ) e. RR ) ) ) |
| 5 |
2 3 4
|
3syl |
|- ( D e. ( *Met ` X ) -> ( <. A , B >. e. ( `' D " RR ) <-> ( <. A , B >. e. ( X X. X ) /\ ( D ` <. A , B >. ) e. RR ) ) ) |
| 6 |
1
|
breqi |
|- ( A .~ B <-> A ( `' D " RR ) B ) |
| 7 |
|
df-br |
|- ( A ( `' D " RR ) B <-> <. A , B >. e. ( `' D " RR ) ) |
| 8 |
6 7
|
bitri |
|- ( A .~ B <-> <. A , B >. e. ( `' D " RR ) ) |
| 9 |
|
df-3an |
|- ( ( A e. X /\ B e. X /\ ( A D B ) e. RR ) <-> ( ( A e. X /\ B e. X ) /\ ( A D B ) e. RR ) ) |
| 10 |
|
opelxp |
|- ( <. A , B >. e. ( X X. X ) <-> ( A e. X /\ B e. X ) ) |
| 11 |
10
|
bicomi |
|- ( ( A e. X /\ B e. X ) <-> <. A , B >. e. ( X X. X ) ) |
| 12 |
|
df-ov |
|- ( A D B ) = ( D ` <. A , B >. ) |
| 13 |
12
|
eleq1i |
|- ( ( A D B ) e. RR <-> ( D ` <. A , B >. ) e. RR ) |
| 14 |
11 13
|
anbi12i |
|- ( ( ( A e. X /\ B e. X ) /\ ( A D B ) e. RR ) <-> ( <. A , B >. e. ( X X. X ) /\ ( D ` <. A , B >. ) e. RR ) ) |
| 15 |
9 14
|
bitri |
|- ( ( A e. X /\ B e. X /\ ( A D B ) e. RR ) <-> ( <. A , B >. e. ( X X. X ) /\ ( D ` <. A , B >. ) e. RR ) ) |
| 16 |
5 8 15
|
3bitr4g |
|- ( D e. ( *Met ` X ) -> ( A .~ B <-> ( A e. X /\ B e. X /\ ( A D B ) e. RR ) ) ) |