| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj1053.1 |
⊢ ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) |
| 2 |
|
bnj1053.2 |
⊢ ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
| 3 |
|
bnj1053.3 |
⊢ ( 𝜒 ↔ ( 𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) |
| 4 |
|
bnj1053.4 |
⊢ ( 𝜃 ↔ ( 𝑅 FrSe 𝐴 ∧ 𝑋 ∈ 𝐴 ) ) |
| 5 |
|
bnj1053.5 |
⊢ ( 𝜏 ↔ ( 𝐵 ∈ V ∧ TrFo ( 𝐵 , 𝐴 , 𝑅 ) ∧ pred ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐵 ) ) |
| 6 |
|
bnj1053.6 |
⊢ ( 𝜁 ↔ ( 𝑖 ∈ 𝑛 ∧ 𝑧 ∈ ( 𝑓 ‘ 𝑖 ) ) ) |
| 7 |
|
bnj1053.7 |
⊢ 𝐷 = ( ω ∖ { ∅ } ) |
| 8 |
|
bnj1053.8 |
⊢ 𝐾 = { 𝑓 ∣ ∃ 𝑛 ∈ 𝐷 ( 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) } |
| 9 |
|
bnj1053.9 |
⊢ ( 𝜂 ↔ ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁 ) → 𝑧 ∈ 𝐵 ) ) |
| 10 |
|
bnj1053.10 |
⊢ ( 𝜌 ↔ ∀ 𝑗 ∈ 𝑛 ( 𝑗 E 𝑖 → [ 𝑗 / 𝑖 ] 𝜂 ) ) |
| 11 |
|
bnj1053.37 |
⊢ ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁 ) → ∀ 𝑖 ∈ 𝑛 ( 𝜌 → 𝜂 ) ) |
| 12 |
7
|
bnj923 |
⊢ ( 𝑛 ∈ 𝐷 → 𝑛 ∈ ω ) |
| 13 |
|
nnord |
⊢ ( 𝑛 ∈ ω → Ord 𝑛 ) |
| 14 |
|
ordfr |
⊢ ( Ord 𝑛 → E Fr 𝑛 ) |
| 15 |
12 13 14
|
3syl |
⊢ ( 𝑛 ∈ 𝐷 → E Fr 𝑛 ) |
| 16 |
3 15
|
bnj769 |
⊢ ( 𝜒 → E Fr 𝑛 ) |
| 17 |
16
|
bnj707 |
⊢ ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁 ) → E Fr 𝑛 ) |
| 18 |
17 11
|
jca |
⊢ ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ∧ 𝜁 ) → ( E Fr 𝑛 ∧ ∀ 𝑖 ∈ 𝑛 ( 𝜌 → 𝜂 ) ) ) |
| 19 |
1 2 3 4 5 6 7 8 9 10 18
|
bnj1052 |
⊢ ( ( 𝜃 ∧ 𝜏 ) → trCl ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐵 ) |