| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj1098.1 |
⊢ 𝐷 = ( ω ∖ { ∅ } ) |
| 2 |
|
3anrev |
⊢ ( ( 𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ) ↔ ( 𝑛 ∈ 𝐷 ∧ 𝑖 ∈ 𝑛 ∧ 𝑖 ≠ ∅ ) ) |
| 3 |
|
df-3an |
⊢ ( ( 𝑛 ∈ 𝐷 ∧ 𝑖 ∈ 𝑛 ∧ 𝑖 ≠ ∅ ) ↔ ( ( 𝑛 ∈ 𝐷 ∧ 𝑖 ∈ 𝑛 ) ∧ 𝑖 ≠ ∅ ) ) |
| 4 |
2 3
|
bitri |
⊢ ( ( 𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ) ↔ ( ( 𝑛 ∈ 𝐷 ∧ 𝑖 ∈ 𝑛 ) ∧ 𝑖 ≠ ∅ ) ) |
| 5 |
|
simpr |
⊢ ( ( 𝑛 ∈ 𝐷 ∧ 𝑖 ∈ 𝑛 ) → 𝑖 ∈ 𝑛 ) |
| 6 |
1
|
bnj923 |
⊢ ( 𝑛 ∈ 𝐷 → 𝑛 ∈ ω ) |
| 7 |
6
|
adantr |
⊢ ( ( 𝑛 ∈ 𝐷 ∧ 𝑖 ∈ 𝑛 ) → 𝑛 ∈ ω ) |
| 8 |
|
elnn |
⊢ ( ( 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ ω ) → 𝑖 ∈ ω ) |
| 9 |
5 7 8
|
syl2anc |
⊢ ( ( 𝑛 ∈ 𝐷 ∧ 𝑖 ∈ 𝑛 ) → 𝑖 ∈ ω ) |
| 10 |
9
|
anim1i |
⊢ ( ( ( 𝑛 ∈ 𝐷 ∧ 𝑖 ∈ 𝑛 ) ∧ 𝑖 ≠ ∅ ) → ( 𝑖 ∈ ω ∧ 𝑖 ≠ ∅ ) ) |
| 11 |
4 10
|
sylbi |
⊢ ( ( 𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ) → ( 𝑖 ∈ ω ∧ 𝑖 ≠ ∅ ) ) |
| 12 |
|
nnsuc |
⊢ ( ( 𝑖 ∈ ω ∧ 𝑖 ≠ ∅ ) → ∃ 𝑗 ∈ ω 𝑖 = suc 𝑗 ) |
| 13 |
11 12
|
syl |
⊢ ( ( 𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ) → ∃ 𝑗 ∈ ω 𝑖 = suc 𝑗 ) |
| 14 |
|
df-rex |
⊢ ( ∃ 𝑗 ∈ ω 𝑖 = suc 𝑗 ↔ ∃ 𝑗 ( 𝑗 ∈ ω ∧ 𝑖 = suc 𝑗 ) ) |
| 15 |
14
|
imbi2i |
⊢ ( ( ( 𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ) → ∃ 𝑗 ∈ ω 𝑖 = suc 𝑗 ) ↔ ( ( 𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ) → ∃ 𝑗 ( 𝑗 ∈ ω ∧ 𝑖 = suc 𝑗 ) ) ) |
| 16 |
|
19.37v |
⊢ ( ∃ 𝑗 ( ( 𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ) → ( 𝑗 ∈ ω ∧ 𝑖 = suc 𝑗 ) ) ↔ ( ( 𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ) → ∃ 𝑗 ( 𝑗 ∈ ω ∧ 𝑖 = suc 𝑗 ) ) ) |
| 17 |
15 16
|
bitr4i |
⊢ ( ( ( 𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ) → ∃ 𝑗 ∈ ω 𝑖 = suc 𝑗 ) ↔ ∃ 𝑗 ( ( 𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ) → ( 𝑗 ∈ ω ∧ 𝑖 = suc 𝑗 ) ) ) |
| 18 |
13 17
|
mpbi |
⊢ ∃ 𝑗 ( ( 𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ) → ( 𝑗 ∈ ω ∧ 𝑖 = suc 𝑗 ) ) |
| 19 |
|
ancr |
⊢ ( ( ( 𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ) → ( 𝑗 ∈ ω ∧ 𝑖 = suc 𝑗 ) ) → ( ( 𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ) → ( ( 𝑗 ∈ ω ∧ 𝑖 = suc 𝑗 ) ∧ ( 𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ) ) ) ) |
| 20 |
18 19
|
bnj101 |
⊢ ∃ 𝑗 ( ( 𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ) → ( ( 𝑗 ∈ ω ∧ 𝑖 = suc 𝑗 ) ∧ ( 𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ) ) ) |
| 21 |
|
vex |
⊢ 𝑗 ∈ V |
| 22 |
21
|
bnj216 |
⊢ ( 𝑖 = suc 𝑗 → 𝑗 ∈ 𝑖 ) |
| 23 |
22
|
ad2antlr |
⊢ ( ( ( 𝑗 ∈ ω ∧ 𝑖 = suc 𝑗 ) ∧ ( 𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ) ) → 𝑗 ∈ 𝑖 ) |
| 24 |
|
simpr2 |
⊢ ( ( ( 𝑗 ∈ ω ∧ 𝑖 = suc 𝑗 ) ∧ ( 𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ) ) → 𝑖 ∈ 𝑛 ) |
| 25 |
|
3simpc |
⊢ ( ( 𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ) → ( 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ) ) |
| 26 |
25
|
ancomd |
⊢ ( ( 𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ) → ( 𝑛 ∈ 𝐷 ∧ 𝑖 ∈ 𝑛 ) ) |
| 27 |
26
|
adantl |
⊢ ( ( ( 𝑗 ∈ ω ∧ 𝑖 = suc 𝑗 ) ∧ ( 𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ) ) → ( 𝑛 ∈ 𝐷 ∧ 𝑖 ∈ 𝑛 ) ) |
| 28 |
|
nnord |
⊢ ( 𝑛 ∈ ω → Ord 𝑛 ) |
| 29 |
|
ordtr1 |
⊢ ( Ord 𝑛 → ( ( 𝑗 ∈ 𝑖 ∧ 𝑖 ∈ 𝑛 ) → 𝑗 ∈ 𝑛 ) ) |
| 30 |
27 7 28 29
|
4syl |
⊢ ( ( ( 𝑗 ∈ ω ∧ 𝑖 = suc 𝑗 ) ∧ ( 𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ) ) → ( ( 𝑗 ∈ 𝑖 ∧ 𝑖 ∈ 𝑛 ) → 𝑗 ∈ 𝑛 ) ) |
| 31 |
23 24 30
|
mp2and |
⊢ ( ( ( 𝑗 ∈ ω ∧ 𝑖 = suc 𝑗 ) ∧ ( 𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ) ) → 𝑗 ∈ 𝑛 ) |
| 32 |
|
simplr |
⊢ ( ( ( 𝑗 ∈ ω ∧ 𝑖 = suc 𝑗 ) ∧ ( 𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ) ) → 𝑖 = suc 𝑗 ) |
| 33 |
31 32
|
jca |
⊢ ( ( ( 𝑗 ∈ ω ∧ 𝑖 = suc 𝑗 ) ∧ ( 𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ) ) → ( 𝑗 ∈ 𝑛 ∧ 𝑖 = suc 𝑗 ) ) |
| 34 |
20 33
|
bnj1023 |
⊢ ∃ 𝑗 ( ( 𝑖 ≠ ∅ ∧ 𝑖 ∈ 𝑛 ∧ 𝑛 ∈ 𝐷 ) → ( 𝑗 ∈ 𝑛 ∧ 𝑖 = suc 𝑗 ) ) |