| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj1118.2 |
⊢ ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑛 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
| 2 |
|
bnj1118.3 |
⊢ ( 𝜒 ↔ ( 𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) |
| 3 |
|
bnj1118.5 |
⊢ ( 𝜏 ↔ ( 𝐵 ∈ V ∧ TrFo ( 𝐵 , 𝐴 , 𝑅 ) ∧ pred ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐵 ) ) |
| 4 |
|
bnj1118.7 |
⊢ 𝐷 = ( ω ∖ { ∅ } ) |
| 5 |
|
bnj1118.18 |
⊢ ( 𝜎 ↔ ( ( 𝑗 ∈ 𝑛 ∧ 𝑗 E 𝑖 ) → 𝜂′ ) ) |
| 6 |
|
bnj1118.19 |
⊢ ( 𝜑0 ↔ ( 𝑖 ∈ 𝑛 ∧ 𝜎 ∧ 𝑓 ∈ 𝐾 ∧ 𝑖 ∈ dom 𝑓 ) ) |
| 7 |
|
bnj1118.26 |
⊢ ( 𝜂′ ↔ ( ( 𝑓 ∈ 𝐾 ∧ 𝑗 ∈ dom 𝑓 ) → ( 𝑓 ‘ 𝑗 ) ⊆ 𝐵 ) ) |
| 8 |
2 4 5 6 7
|
bnj1110 |
⊢ ∃ 𝑗 ( ( 𝑖 ≠ ∅ ∧ ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ) ∧ 𝜑0 ) ) → ( 𝑗 ∈ 𝑛 ∧ 𝑖 = suc 𝑗 ∧ ( 𝑓 ‘ 𝑗 ) ⊆ 𝐵 ) ) |
| 9 |
|
ancl |
⊢ ( ( ( 𝑖 ≠ ∅ ∧ ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ) ∧ 𝜑0 ) ) → ( 𝑗 ∈ 𝑛 ∧ 𝑖 = suc 𝑗 ∧ ( 𝑓 ‘ 𝑗 ) ⊆ 𝐵 ) ) → ( ( 𝑖 ≠ ∅ ∧ ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ) ∧ 𝜑0 ) ) → ( ( 𝑖 ≠ ∅ ∧ ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ) ∧ 𝜑0 ) ) ∧ ( 𝑗 ∈ 𝑛 ∧ 𝑖 = suc 𝑗 ∧ ( 𝑓 ‘ 𝑗 ) ⊆ 𝐵 ) ) ) ) |
| 10 |
8 9
|
bnj101 |
⊢ ∃ 𝑗 ( ( 𝑖 ≠ ∅ ∧ ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ) ∧ 𝜑0 ) ) → ( ( 𝑖 ≠ ∅ ∧ ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ) ∧ 𝜑0 ) ) ∧ ( 𝑗 ∈ 𝑛 ∧ 𝑖 = suc 𝑗 ∧ ( 𝑓 ‘ 𝑗 ) ⊆ 𝐵 ) ) ) |
| 11 |
|
simpr2 |
⊢ ( ( ( 𝑖 ≠ ∅ ∧ ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ) ∧ 𝜑0 ) ) ∧ ( 𝑗 ∈ 𝑛 ∧ 𝑖 = suc 𝑗 ∧ ( 𝑓 ‘ 𝑗 ) ⊆ 𝐵 ) ) → 𝑖 = suc 𝑗 ) |
| 12 |
2
|
bnj1254 |
⊢ ( 𝜒 → 𝜓 ) |
| 13 |
12
|
3ad2ant3 |
⊢ ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ) → 𝜓 ) |
| 14 |
13
|
ad2antrl |
⊢ ( ( 𝑖 ≠ ∅ ∧ ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ) ∧ 𝜑0 ) ) → 𝜓 ) |
| 15 |
14
|
adantr |
⊢ ( ( ( 𝑖 ≠ ∅ ∧ ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ) ∧ 𝜑0 ) ) ∧ ( 𝑗 ∈ 𝑛 ∧ 𝑖 = suc 𝑗 ∧ ( 𝑓 ‘ 𝑗 ) ⊆ 𝐵 ) ) → 𝜓 ) |
| 16 |
2
|
bnj1232 |
⊢ ( 𝜒 → 𝑛 ∈ 𝐷 ) |
| 17 |
16
|
3ad2ant3 |
⊢ ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ) → 𝑛 ∈ 𝐷 ) |
| 18 |
17
|
ad2antrl |
⊢ ( ( 𝑖 ≠ ∅ ∧ ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ) ∧ 𝜑0 ) ) → 𝑛 ∈ 𝐷 ) |
| 19 |
18
|
adantr |
⊢ ( ( ( 𝑖 ≠ ∅ ∧ ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ) ∧ 𝜑0 ) ) ∧ ( 𝑗 ∈ 𝑛 ∧ 𝑖 = suc 𝑗 ∧ ( 𝑓 ‘ 𝑗 ) ⊆ 𝐵 ) ) → 𝑛 ∈ 𝐷 ) |
| 20 |
|
simpr1 |
⊢ ( ( ( 𝑖 ≠ ∅ ∧ ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ) ∧ 𝜑0 ) ) ∧ ( 𝑗 ∈ 𝑛 ∧ 𝑖 = suc 𝑗 ∧ ( 𝑓 ‘ 𝑗 ) ⊆ 𝐵 ) ) → 𝑗 ∈ 𝑛 ) |
| 21 |
4
|
bnj923 |
⊢ ( 𝑛 ∈ 𝐷 → 𝑛 ∈ ω ) |
| 22 |
21
|
anim1i |
⊢ ( ( 𝑛 ∈ 𝐷 ∧ 𝑗 ∈ 𝑛 ) → ( 𝑛 ∈ ω ∧ 𝑗 ∈ 𝑛 ) ) |
| 23 |
22
|
ancomd |
⊢ ( ( 𝑛 ∈ 𝐷 ∧ 𝑗 ∈ 𝑛 ) → ( 𝑗 ∈ 𝑛 ∧ 𝑛 ∈ ω ) ) |
| 24 |
19 20 23
|
syl2anc |
⊢ ( ( ( 𝑖 ≠ ∅ ∧ ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ) ∧ 𝜑0 ) ) ∧ ( 𝑗 ∈ 𝑛 ∧ 𝑖 = suc 𝑗 ∧ ( 𝑓 ‘ 𝑗 ) ⊆ 𝐵 ) ) → ( 𝑗 ∈ 𝑛 ∧ 𝑛 ∈ ω ) ) |
| 25 |
|
elnn |
⊢ ( ( 𝑗 ∈ 𝑛 ∧ 𝑛 ∈ ω ) → 𝑗 ∈ ω ) |
| 26 |
24 25
|
syl |
⊢ ( ( ( 𝑖 ≠ ∅ ∧ ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ) ∧ 𝜑0 ) ) ∧ ( 𝑗 ∈ 𝑛 ∧ 𝑖 = suc 𝑗 ∧ ( 𝑓 ‘ 𝑗 ) ⊆ 𝐵 ) ) → 𝑗 ∈ ω ) |
| 27 |
6
|
bnj1232 |
⊢ ( 𝜑0 → 𝑖 ∈ 𝑛 ) |
| 28 |
27
|
adantl |
⊢ ( ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ) ∧ 𝜑0 ) → 𝑖 ∈ 𝑛 ) |
| 29 |
28
|
ad2antlr |
⊢ ( ( ( 𝑖 ≠ ∅ ∧ ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ) ∧ 𝜑0 ) ) ∧ ( 𝑗 ∈ 𝑛 ∧ 𝑖 = suc 𝑗 ∧ ( 𝑓 ‘ 𝑗 ) ⊆ 𝐵 ) ) → 𝑖 ∈ 𝑛 ) |
| 30 |
11 15 26 29
|
bnj951 |
⊢ ( ( ( 𝑖 ≠ ∅ ∧ ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ) ∧ 𝜑0 ) ) ∧ ( 𝑗 ∈ 𝑛 ∧ 𝑖 = suc 𝑗 ∧ ( 𝑓 ‘ 𝑗 ) ⊆ 𝐵 ) ) → ( 𝑖 = suc 𝑗 ∧ 𝜓 ∧ 𝑗 ∈ ω ∧ 𝑖 ∈ 𝑛 ) ) |
| 31 |
3
|
simp2bi |
⊢ ( 𝜏 → TrFo ( 𝐵 , 𝐴 , 𝑅 ) ) |
| 32 |
31
|
3ad2ant2 |
⊢ ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ) → TrFo ( 𝐵 , 𝐴 , 𝑅 ) ) |
| 33 |
32
|
ad2antrl |
⊢ ( ( 𝑖 ≠ ∅ ∧ ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ) ∧ 𝜑0 ) ) → TrFo ( 𝐵 , 𝐴 , 𝑅 ) ) |
| 34 |
|
simp3 |
⊢ ( ( 𝑗 ∈ 𝑛 ∧ 𝑖 = suc 𝑗 ∧ ( 𝑓 ‘ 𝑗 ) ⊆ 𝐵 ) → ( 𝑓 ‘ 𝑗 ) ⊆ 𝐵 ) |
| 35 |
33 34
|
anim12i |
⊢ ( ( ( 𝑖 ≠ ∅ ∧ ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ) ∧ 𝜑0 ) ) ∧ ( 𝑗 ∈ 𝑛 ∧ 𝑖 = suc 𝑗 ∧ ( 𝑓 ‘ 𝑗 ) ⊆ 𝐵 ) ) → ( TrFo ( 𝐵 , 𝐴 , 𝑅 ) ∧ ( 𝑓 ‘ 𝑗 ) ⊆ 𝐵 ) ) |
| 36 |
|
bnj256 |
⊢ ( ( 𝑖 = suc 𝑗 ∧ 𝜓 ∧ 𝑗 ∈ ω ∧ 𝑖 ∈ 𝑛 ) ↔ ( ( 𝑖 = suc 𝑗 ∧ 𝜓 ) ∧ ( 𝑗 ∈ ω ∧ 𝑖 ∈ 𝑛 ) ) ) |
| 37 |
1
|
bnj1112 |
⊢ ( 𝜓 ↔ ∀ 𝑗 ( ( 𝑗 ∈ ω ∧ suc 𝑗 ∈ 𝑛 ) → ( 𝑓 ‘ suc 𝑗 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑗 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
| 38 |
37
|
biimpi |
⊢ ( 𝜓 → ∀ 𝑗 ( ( 𝑗 ∈ ω ∧ suc 𝑗 ∈ 𝑛 ) → ( 𝑓 ‘ suc 𝑗 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑗 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
| 39 |
38
|
19.21bi |
⊢ ( 𝜓 → ( ( 𝑗 ∈ ω ∧ suc 𝑗 ∈ 𝑛 ) → ( 𝑓 ‘ suc 𝑗 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑗 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
| 40 |
|
eleq1 |
⊢ ( 𝑖 = suc 𝑗 → ( 𝑖 ∈ 𝑛 ↔ suc 𝑗 ∈ 𝑛 ) ) |
| 41 |
40
|
anbi2d |
⊢ ( 𝑖 = suc 𝑗 → ( ( 𝑗 ∈ ω ∧ 𝑖 ∈ 𝑛 ) ↔ ( 𝑗 ∈ ω ∧ suc 𝑗 ∈ 𝑛 ) ) ) |
| 42 |
|
fveqeq2 |
⊢ ( 𝑖 = suc 𝑗 → ( ( 𝑓 ‘ 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑗 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ↔ ( 𝑓 ‘ suc 𝑗 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑗 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
| 43 |
41 42
|
imbi12d |
⊢ ( 𝑖 = suc 𝑗 → ( ( ( 𝑗 ∈ ω ∧ 𝑖 ∈ 𝑛 ) → ( 𝑓 ‘ 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑗 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ ( ( 𝑗 ∈ ω ∧ suc 𝑗 ∈ 𝑛 ) → ( 𝑓 ‘ suc 𝑗 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑗 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
| 44 |
39 43
|
imbitrrid |
⊢ ( 𝑖 = suc 𝑗 → ( 𝜓 → ( ( 𝑗 ∈ ω ∧ 𝑖 ∈ 𝑛 ) → ( 𝑓 ‘ 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑗 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
| 45 |
44
|
imp31 |
⊢ ( ( ( 𝑖 = suc 𝑗 ∧ 𝜓 ) ∧ ( 𝑗 ∈ ω ∧ 𝑖 ∈ 𝑛 ) ) → ( 𝑓 ‘ 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑗 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) |
| 46 |
36 45
|
sylbi |
⊢ ( ( 𝑖 = suc 𝑗 ∧ 𝜓 ∧ 𝑗 ∈ ω ∧ 𝑖 ∈ 𝑛 ) → ( 𝑓 ‘ 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑗 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) |
| 47 |
|
df-bnj19 |
⊢ ( TrFo ( 𝐵 , 𝐴 , 𝑅 ) ↔ ∀ 𝑦 ∈ 𝐵 pred ( 𝑦 , 𝐴 , 𝑅 ) ⊆ 𝐵 ) |
| 48 |
|
ssralv |
⊢ ( ( 𝑓 ‘ 𝑗 ) ⊆ 𝐵 → ( ∀ 𝑦 ∈ 𝐵 pred ( 𝑦 , 𝐴 , 𝑅 ) ⊆ 𝐵 → ∀ 𝑦 ∈ ( 𝑓 ‘ 𝑗 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ⊆ 𝐵 ) ) |
| 49 |
47 48
|
biimtrid |
⊢ ( ( 𝑓 ‘ 𝑗 ) ⊆ 𝐵 → ( TrFo ( 𝐵 , 𝐴 , 𝑅 ) → ∀ 𝑦 ∈ ( 𝑓 ‘ 𝑗 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ⊆ 𝐵 ) ) |
| 50 |
49
|
impcom |
⊢ ( ( TrFo ( 𝐵 , 𝐴 , 𝑅 ) ∧ ( 𝑓 ‘ 𝑗 ) ⊆ 𝐵 ) → ∀ 𝑦 ∈ ( 𝑓 ‘ 𝑗 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ⊆ 𝐵 ) |
| 51 |
|
iunss |
⊢ ( ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑗 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ⊆ 𝐵 ↔ ∀ 𝑦 ∈ ( 𝑓 ‘ 𝑗 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ⊆ 𝐵 ) |
| 52 |
50 51
|
sylibr |
⊢ ( ( TrFo ( 𝐵 , 𝐴 , 𝑅 ) ∧ ( 𝑓 ‘ 𝑗 ) ⊆ 𝐵 ) → ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑗 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ⊆ 𝐵 ) |
| 53 |
|
sseq1 |
⊢ ( ( 𝑓 ‘ 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑗 ) pred ( 𝑦 , 𝐴 , 𝑅 ) → ( ( 𝑓 ‘ 𝑖 ) ⊆ 𝐵 ↔ ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑗 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ⊆ 𝐵 ) ) |
| 54 |
53
|
biimpar |
⊢ ( ( ( 𝑓 ‘ 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑗 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ∧ ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑗 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ⊆ 𝐵 ) → ( 𝑓 ‘ 𝑖 ) ⊆ 𝐵 ) |
| 55 |
46 52 54
|
syl2an |
⊢ ( ( ( 𝑖 = suc 𝑗 ∧ 𝜓 ∧ 𝑗 ∈ ω ∧ 𝑖 ∈ 𝑛 ) ∧ ( TrFo ( 𝐵 , 𝐴 , 𝑅 ) ∧ ( 𝑓 ‘ 𝑗 ) ⊆ 𝐵 ) ) → ( 𝑓 ‘ 𝑖 ) ⊆ 𝐵 ) |
| 56 |
30 35 55
|
syl2anc |
⊢ ( ( ( 𝑖 ≠ ∅ ∧ ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ) ∧ 𝜑0 ) ) ∧ ( 𝑗 ∈ 𝑛 ∧ 𝑖 = suc 𝑗 ∧ ( 𝑓 ‘ 𝑗 ) ⊆ 𝐵 ) ) → ( 𝑓 ‘ 𝑖 ) ⊆ 𝐵 ) |
| 57 |
10 56
|
bnj1023 |
⊢ ∃ 𝑗 ( ( 𝑖 ≠ ∅ ∧ ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ) ∧ 𝜑0 ) ) → ( 𝑓 ‘ 𝑖 ) ⊆ 𝐵 ) |