Metamath Proof Explorer


Theorem bnj1124

Description: Property of _trCl . (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1124.4 ( 𝜃 ↔ ( 𝑅 FrSe 𝐴𝑋𝐴 ) )
bnj1124.5 ( 𝜏 ↔ ( 𝐵 ∈ V ∧ TrFo ( 𝐵 , 𝐴 , 𝑅 ) ∧ pred ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐵 ) )
Assertion bnj1124 ( ( 𝜃𝜏 ) → trCl ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐵 )

Proof

Step Hyp Ref Expression
1 bnj1124.4 ( 𝜃 ↔ ( 𝑅 FrSe 𝐴𝑋𝐴 ) )
2 bnj1124.5 ( 𝜏 ↔ ( 𝐵 ∈ V ∧ TrFo ( 𝐵 , 𝐴 , 𝑅 ) ∧ pred ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐵 ) )
3 biid ( ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) )
4 biid ( ∀ 𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ ∀ 𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
5 biid ( ( 𝑛 ∈ ( ω ∖ { ∅ } ) ∧ 𝑓 Fn 𝑛 ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ↔ ( 𝑛 ∈ ( ω ∖ { ∅ } ) ∧ 𝑓 Fn 𝑛 ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) )
6 biid ( ( 𝑖𝑛𝑧 ∈ ( 𝑓𝑖 ) ) ↔ ( 𝑖𝑛𝑧 ∈ ( 𝑓𝑖 ) ) )
7 eqid ( ω ∖ { ∅ } ) = ( ω ∖ { ∅ } )
8 eqid { 𝑓 ∣ ∃ 𝑛 ∈ ( ω ∖ { ∅ } ) ( 𝑓 Fn 𝑛 ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) } = { 𝑓 ∣ ∃ 𝑛 ∈ ( ω ∖ { ∅ } ) ( 𝑓 Fn 𝑛 ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) }
9 biid ( ( ( 𝑓 ∈ { 𝑓 ∣ ∃ 𝑛 ∈ ( ω ∖ { ∅ } ) ( 𝑓 Fn 𝑛 ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) } ∧ 𝑖 ∈ dom 𝑓 ) → ( 𝑓𝑖 ) ⊆ 𝐵 ) ↔ ( ( 𝑓 ∈ { 𝑓 ∣ ∃ 𝑛 ∈ ( ω ∖ { ∅ } ) ( 𝑓 Fn 𝑛 ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) } ∧ 𝑖 ∈ dom 𝑓 ) → ( 𝑓𝑖 ) ⊆ 𝐵 ) )
10 biid ( ∀ 𝑗𝑛 ( 𝑗 E 𝑖[ 𝑗 / 𝑖 ] ( ( 𝑓 ∈ { 𝑓 ∣ ∃ 𝑛 ∈ ( ω ∖ { ∅ } ) ( 𝑓 Fn 𝑛 ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) } ∧ 𝑖 ∈ dom 𝑓 ) → ( 𝑓𝑖 ) ⊆ 𝐵 ) ) ↔ ∀ 𝑗𝑛 ( 𝑗 E 𝑖[ 𝑗 / 𝑖 ] ( ( 𝑓 ∈ { 𝑓 ∣ ∃ 𝑛 ∈ ( ω ∖ { ∅ } ) ( 𝑓 Fn 𝑛 ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) } ∧ 𝑖 ∈ dom 𝑓 ) → ( 𝑓𝑖 ) ⊆ 𝐵 ) ) )
11 biid ( [ 𝑗 / 𝑖 ] ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ↔ [ 𝑗 / 𝑖 ] ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) )
12 biid ( [ 𝑗 / 𝑖 ]𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ↔ [ 𝑗 / 𝑖 ]𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
13 biid ( [ 𝑗 / 𝑖 ] ( 𝑛 ∈ ( ω ∖ { ∅ } ) ∧ 𝑓 Fn 𝑛 ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) ↔ [ 𝑗 / 𝑖 ] ( 𝑛 ∈ ( ω ∖ { ∅ } ) ∧ 𝑓 Fn 𝑛 ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) )
14 biid ( [ 𝑗 / 𝑖 ] 𝜃[ 𝑗 / 𝑖 ] 𝜃 )
15 biid ( [ 𝑗 / 𝑖 ] 𝜏[ 𝑗 / 𝑖 ] 𝜏 )
16 biid ( [ 𝑗 / 𝑖 ] ( 𝑖𝑛𝑧 ∈ ( 𝑓𝑖 ) ) ↔ [ 𝑗 / 𝑖 ] ( 𝑖𝑛𝑧 ∈ ( 𝑓𝑖 ) ) )
17 biid ( [ 𝑗 / 𝑖 ] ( ( 𝑓 ∈ { 𝑓 ∣ ∃ 𝑛 ∈ ( ω ∖ { ∅ } ) ( 𝑓 Fn 𝑛 ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) } ∧ 𝑖 ∈ dom 𝑓 ) → ( 𝑓𝑖 ) ⊆ 𝐵 ) ↔ [ 𝑗 / 𝑖 ] ( ( 𝑓 ∈ { 𝑓 ∣ ∃ 𝑛 ∈ ( ω ∖ { ∅ } ) ( 𝑓 Fn 𝑛 ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) } ∧ 𝑖 ∈ dom 𝑓 ) → ( 𝑓𝑖 ) ⊆ 𝐵 ) )
18 biid ( ( ( 𝑗𝑛𝑗 E 𝑖 ) → [ 𝑗 / 𝑖 ] ( ( 𝑓 ∈ { 𝑓 ∣ ∃ 𝑛 ∈ ( ω ∖ { ∅ } ) ( 𝑓 Fn 𝑛 ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) } ∧ 𝑖 ∈ dom 𝑓 ) → ( 𝑓𝑖 ) ⊆ 𝐵 ) ) ↔ ( ( 𝑗𝑛𝑗 E 𝑖 ) → [ 𝑗 / 𝑖 ] ( ( 𝑓 ∈ { 𝑓 ∣ ∃ 𝑛 ∈ ( ω ∖ { ∅ } ) ( 𝑓 Fn 𝑛 ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) } ∧ 𝑖 ∈ dom 𝑓 ) → ( 𝑓𝑖 ) ⊆ 𝐵 ) ) )
19 biid ( ( 𝑖𝑛 ∧ ( ( 𝑗𝑛𝑗 E 𝑖 ) → [ 𝑗 / 𝑖 ] ( ( 𝑓 ∈ { 𝑓 ∣ ∃ 𝑛 ∈ ( ω ∖ { ∅ } ) ( 𝑓 Fn 𝑛 ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) } ∧ 𝑖 ∈ dom 𝑓 ) → ( 𝑓𝑖 ) ⊆ 𝐵 ) ) ∧ 𝑓 ∈ { 𝑓 ∣ ∃ 𝑛 ∈ ( ω ∖ { ∅ } ) ( 𝑓 Fn 𝑛 ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) } ∧ 𝑖 ∈ dom 𝑓 ) ↔ ( 𝑖𝑛 ∧ ( ( 𝑗𝑛𝑗 E 𝑖 ) → [ 𝑗 / 𝑖 ] ( ( 𝑓 ∈ { 𝑓 ∣ ∃ 𝑛 ∈ ( ω ∖ { ∅ } ) ( 𝑓 Fn 𝑛 ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) } ∧ 𝑖 ∈ dom 𝑓 ) → ( 𝑓𝑖 ) ⊆ 𝐵 ) ) ∧ 𝑓 ∈ { 𝑓 ∣ ∃ 𝑛 ∈ ( ω ∖ { ∅ } ) ( 𝑓 Fn 𝑛 ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ ∀ 𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) } ∧ 𝑖 ∈ dom 𝑓 ) )
20 3 4 5 1 2 6 7 8 9 10 11 12 13 14 15 16 17 18 19 bnj1030 ( ( 𝜃𝜏 ) → trCl ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐵 )