Metamath Proof Explorer


Theorem bnj1030

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1030.1 ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) )
bnj1030.2 ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
bnj1030.3 ( 𝜒 ↔ ( 𝑛𝐷𝑓 Fn 𝑛𝜑𝜓 ) )
bnj1030.4 ( 𝜃 ↔ ( 𝑅 FrSe 𝐴𝑋𝐴 ) )
bnj1030.5 ( 𝜏 ↔ ( 𝐵 ∈ V ∧ TrFo ( 𝐵 , 𝐴 , 𝑅 ) ∧ pred ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐵 ) )
bnj1030.6 ( 𝜁 ↔ ( 𝑖𝑛𝑧 ∈ ( 𝑓𝑖 ) ) )
bnj1030.7 𝐷 = ( ω ∖ { ∅ } )
bnj1030.8 𝐾 = { 𝑓 ∣ ∃ 𝑛𝐷 ( 𝑓 Fn 𝑛𝜑𝜓 ) }
bnj1030.9 ( 𝜂 ↔ ( ( 𝑓𝐾𝑖 ∈ dom 𝑓 ) → ( 𝑓𝑖 ) ⊆ 𝐵 ) )
bnj1030.10 ( 𝜌 ↔ ∀ 𝑗𝑛 ( 𝑗 E 𝑖[ 𝑗 / 𝑖 ] 𝜂 ) )
bnj1030.11 ( 𝜑′[ 𝑗 / 𝑖 ] 𝜑 )
bnj1030.12 ( 𝜓′[ 𝑗 / 𝑖 ] 𝜓 )
bnj1030.13 ( 𝜒′[ 𝑗 / 𝑖 ] 𝜒 )
bnj1030.14 ( 𝜃′[ 𝑗 / 𝑖 ] 𝜃 )
bnj1030.15 ( 𝜏′[ 𝑗 / 𝑖 ] 𝜏 )
bnj1030.16 ( 𝜁′[ 𝑗 / 𝑖 ] 𝜁 )
bnj1030.17 ( 𝜂′[ 𝑗 / 𝑖 ] 𝜂 )
bnj1030.18 ( 𝜎 ↔ ( ( 𝑗𝑛𝑗 E 𝑖 ) → 𝜂′ ) )
bnj1030.19 ( 𝜑0 ↔ ( 𝑖𝑛𝜎𝑓𝐾𝑖 ∈ dom 𝑓 ) )
Assertion bnj1030 ( ( 𝜃𝜏 ) → trCl ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐵 )

Proof

Step Hyp Ref Expression
1 bnj1030.1 ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) )
2 bnj1030.2 ( 𝜓 ↔ ∀ 𝑖 ∈ ω ( suc 𝑖𝑛 → ( 𝑓 ‘ suc 𝑖 ) = 𝑦 ∈ ( 𝑓𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) )
3 bnj1030.3 ( 𝜒 ↔ ( 𝑛𝐷𝑓 Fn 𝑛𝜑𝜓 ) )
4 bnj1030.4 ( 𝜃 ↔ ( 𝑅 FrSe 𝐴𝑋𝐴 ) )
5 bnj1030.5 ( 𝜏 ↔ ( 𝐵 ∈ V ∧ TrFo ( 𝐵 , 𝐴 , 𝑅 ) ∧ pred ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐵 ) )
6 bnj1030.6 ( 𝜁 ↔ ( 𝑖𝑛𝑧 ∈ ( 𝑓𝑖 ) ) )
7 bnj1030.7 𝐷 = ( ω ∖ { ∅ } )
8 bnj1030.8 𝐾 = { 𝑓 ∣ ∃ 𝑛𝐷 ( 𝑓 Fn 𝑛𝜑𝜓 ) }
9 bnj1030.9 ( 𝜂 ↔ ( ( 𝑓𝐾𝑖 ∈ dom 𝑓 ) → ( 𝑓𝑖 ) ⊆ 𝐵 ) )
10 bnj1030.10 ( 𝜌 ↔ ∀ 𝑗𝑛 ( 𝑗 E 𝑖[ 𝑗 / 𝑖 ] 𝜂 ) )
11 bnj1030.11 ( 𝜑′[ 𝑗 / 𝑖 ] 𝜑 )
12 bnj1030.12 ( 𝜓′[ 𝑗 / 𝑖 ] 𝜓 )
13 bnj1030.13 ( 𝜒′[ 𝑗 / 𝑖 ] 𝜒 )
14 bnj1030.14 ( 𝜃′[ 𝑗 / 𝑖 ] 𝜃 )
15 bnj1030.15 ( 𝜏′[ 𝑗 / 𝑖 ] 𝜏 )
16 bnj1030.16 ( 𝜁′[ 𝑗 / 𝑖 ] 𝜁 )
17 bnj1030.17 ( 𝜂′[ 𝑗 / 𝑖 ] 𝜂 )
18 bnj1030.18 ( 𝜎 ↔ ( ( 𝑗𝑛𝑗 E 𝑖 ) → 𝜂′ ) )
19 bnj1030.19 ( 𝜑0 ↔ ( 𝑖𝑛𝜎𝑓𝐾𝑖 ∈ dom 𝑓 ) )
20 19.23vv ( ∀ 𝑛𝑖 ( ( 𝜃𝜏𝜒𝜁 ) → 𝑧𝐵 ) ↔ ( ∃ 𝑛𝑖 ( 𝜃𝜏𝜒𝜁 ) → 𝑧𝐵 ) )
21 20 albii ( ∀ 𝑓𝑛𝑖 ( ( 𝜃𝜏𝜒𝜁 ) → 𝑧𝐵 ) ↔ ∀ 𝑓 ( ∃ 𝑛𝑖 ( 𝜃𝜏𝜒𝜁 ) → 𝑧𝐵 ) )
22 19.23v ( ∀ 𝑓 ( ∃ 𝑛𝑖 ( 𝜃𝜏𝜒𝜁 ) → 𝑧𝐵 ) ↔ ( ∃ 𝑓𝑛𝑖 ( 𝜃𝜏𝜒𝜁 ) → 𝑧𝐵 ) )
23 21 22 bitri ( ∀ 𝑓𝑛𝑖 ( ( 𝜃𝜏𝜒𝜁 ) → 𝑧𝐵 ) ↔ ( ∃ 𝑓𝑛𝑖 ( 𝜃𝜏𝜒𝜁 ) → 𝑧𝐵 ) )
24 7 bnj1071 ( 𝑛𝐷 → E Fr 𝑛 )
25 3 24 bnj769 ( 𝜒 → E Fr 𝑛 )
26 25 bnj707 ( ( 𝜃𝜏𝜒𝜁 ) → E Fr 𝑛 )
27 2 8 9 17 bnj1123 ( 𝜂′ ↔ ( ( 𝑓𝐾𝑗 ∈ dom 𝑓 ) → ( 𝑓𝑗 ) ⊆ 𝐵 ) )
28 2 3 5 7 18 19 27 bnj1118 𝑗 ( ( 𝑖 ≠ ∅ ∧ ( ( 𝜃𝜏𝜒 ) ∧ 𝜑0 ) ) → ( 𝑓𝑖 ) ⊆ 𝐵 )
29 1 3 5 bnj1097 ( ( 𝑖 = ∅ ∧ ( ( 𝜃𝜏𝜒 ) ∧ 𝜑0 ) ) → ( 𝑓𝑖 ) ⊆ 𝐵 )
30 28 29 bnj1109 𝑗 ( ( ( 𝜃𝜏𝜒 ) ∧ 𝜑0 ) → ( 𝑓𝑖 ) ⊆ 𝐵 )
31 30 2 3 bnj1093 ( ( 𝜃𝜏𝜒𝜁 ) → ∀ 𝑖𝑗 ( 𝜑0 → ( 𝑓𝑖 ) ⊆ 𝐵 ) )
32 9 10 17 18 19 31 bnj1090 ( ( 𝜃𝜏𝜒𝜁 ) → ∀ 𝑖𝑛 ( 𝜌𝜂 ) )
33 vex 𝑛 ∈ V
34 33 10 bnj110 ( ( E Fr 𝑛 ∧ ∀ 𝑖𝑛 ( 𝜌𝜂 ) ) → ∀ 𝑖𝑛 𝜂 )
35 26 32 34 syl2anc ( ( 𝜃𝜏𝜒𝜁 ) → ∀ 𝑖𝑛 𝜂 )
36 4 5 3 6 9 35 8 bnj1121 ( ( 𝜃𝜏𝜒𝜁 ) → 𝑧𝐵 )
37 36 gen2 𝑛𝑖 ( ( 𝜃𝜏𝜒𝜁 ) → 𝑧𝐵 )
38 23 37 mpgbi ( ∃ 𝑓𝑛𝑖 ( 𝜃𝜏𝜒𝜁 ) → 𝑧𝐵 )
39 1 2 3 4 5 6 7 8 38 bnj1034 ( ( 𝜃𝜏 ) → trCl ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐵 )