| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj1109.1 |
⊢ ∃ 𝑥 ( ( 𝐴 ≠ 𝐵 ∧ 𝜑 ) → 𝜓 ) |
| 2 |
|
bnj1109.2 |
⊢ ( ( 𝐴 = 𝐵 ∧ 𝜑 ) → 𝜓 ) |
| 3 |
2
|
ex |
⊢ ( 𝐴 = 𝐵 → ( 𝜑 → 𝜓 ) ) |
| 4 |
3
|
a1i |
⊢ ( ( 𝐴 ≠ 𝐵 → ( 𝜑 → 𝜓 ) ) → ( 𝐴 = 𝐵 → ( 𝜑 → 𝜓 ) ) ) |
| 5 |
4
|
ax-gen |
⊢ ∀ 𝑥 ( ( 𝐴 ≠ 𝐵 → ( 𝜑 → 𝜓 ) ) → ( 𝐴 = 𝐵 → ( 𝜑 → 𝜓 ) ) ) |
| 6 |
|
impexp |
⊢ ( ( ( 𝐴 ≠ 𝐵 ∧ 𝜑 ) → 𝜓 ) ↔ ( 𝐴 ≠ 𝐵 → ( 𝜑 → 𝜓 ) ) ) |
| 7 |
6
|
exbii |
⊢ ( ∃ 𝑥 ( ( 𝐴 ≠ 𝐵 ∧ 𝜑 ) → 𝜓 ) ↔ ∃ 𝑥 ( 𝐴 ≠ 𝐵 → ( 𝜑 → 𝜓 ) ) ) |
| 8 |
1 7
|
mpbi |
⊢ ∃ 𝑥 ( 𝐴 ≠ 𝐵 → ( 𝜑 → 𝜓 ) ) |
| 9 |
|
exintr |
⊢ ( ∀ 𝑥 ( ( 𝐴 ≠ 𝐵 → ( 𝜑 → 𝜓 ) ) → ( 𝐴 = 𝐵 → ( 𝜑 → 𝜓 ) ) ) → ( ∃ 𝑥 ( 𝐴 ≠ 𝐵 → ( 𝜑 → 𝜓 ) ) → ∃ 𝑥 ( ( 𝐴 ≠ 𝐵 → ( 𝜑 → 𝜓 ) ) ∧ ( 𝐴 = 𝐵 → ( 𝜑 → 𝜓 ) ) ) ) ) |
| 10 |
5 8 9
|
mp2 |
⊢ ∃ 𝑥 ( ( 𝐴 ≠ 𝐵 → ( 𝜑 → 𝜓 ) ) ∧ ( 𝐴 = 𝐵 → ( 𝜑 → 𝜓 ) ) ) |
| 11 |
|
exancom |
⊢ ( ∃ 𝑥 ( ( 𝐴 ≠ 𝐵 → ( 𝜑 → 𝜓 ) ) ∧ ( 𝐴 = 𝐵 → ( 𝜑 → 𝜓 ) ) ) ↔ ∃ 𝑥 ( ( 𝐴 = 𝐵 → ( 𝜑 → 𝜓 ) ) ∧ ( 𝐴 ≠ 𝐵 → ( 𝜑 → 𝜓 ) ) ) ) |
| 12 |
10 11
|
mpbi |
⊢ ∃ 𝑥 ( ( 𝐴 = 𝐵 → ( 𝜑 → 𝜓 ) ) ∧ ( 𝐴 ≠ 𝐵 → ( 𝜑 → 𝜓 ) ) ) |
| 13 |
|
df-ne |
⊢ ( 𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵 ) |
| 14 |
13
|
imbi1i |
⊢ ( ( 𝐴 ≠ 𝐵 → ( 𝜑 → 𝜓 ) ) ↔ ( ¬ 𝐴 = 𝐵 → ( 𝜑 → 𝜓 ) ) ) |
| 15 |
|
pm2.61 |
⊢ ( ( 𝐴 = 𝐵 → ( 𝜑 → 𝜓 ) ) → ( ( ¬ 𝐴 = 𝐵 → ( 𝜑 → 𝜓 ) ) → ( 𝜑 → 𝜓 ) ) ) |
| 16 |
15
|
imp |
⊢ ( ( ( 𝐴 = 𝐵 → ( 𝜑 → 𝜓 ) ) ∧ ( ¬ 𝐴 = 𝐵 → ( 𝜑 → 𝜓 ) ) ) → ( 𝜑 → 𝜓 ) ) |
| 17 |
14 16
|
sylan2b |
⊢ ( ( ( 𝐴 = 𝐵 → ( 𝜑 → 𝜓 ) ) ∧ ( 𝐴 ≠ 𝐵 → ( 𝜑 → 𝜓 ) ) ) → ( 𝜑 → 𝜓 ) ) |
| 18 |
12 17
|
bnj101 |
⊢ ∃ 𝑥 ( 𝜑 → 𝜓 ) |