Metamath Proof Explorer


Theorem bnj1109

Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1109.1 xABφψ
bnj1109.2 A=Bφψ
Assertion bnj1109 xφψ

Proof

Step Hyp Ref Expression
1 bnj1109.1 xABφψ
2 bnj1109.2 A=Bφψ
3 2 ex A=Bφψ
4 3 a1i ABφψA=Bφψ
5 4 ax-gen xABφψA=Bφψ
6 impexp ABφψABφψ
7 6 exbii xABφψxABφψ
8 1 7 mpbi xABφψ
9 exintr xABφψA=BφψxABφψxABφψA=Bφψ
10 5 8 9 mp2 xABφψA=Bφψ
11 exancom xABφψA=BφψxA=BφψABφψ
12 10 11 mpbi xA=BφψABφψ
13 df-ne AB¬A=B
14 13 imbi1i ABφψ¬A=Bφψ
15 pm2.61 A=Bφψ¬A=Bφψφψ
16 15 imp A=Bφψ¬A=Bφψφψ
17 14 16 sylan2b A=BφψABφψφψ
18 12 17 bnj101 xφψ