| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj1097.1 |
⊢ ( 𝜑 ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) |
| 2 |
|
bnj1097.3 |
⊢ ( 𝜒 ↔ ( 𝑛 ∈ 𝐷 ∧ 𝑓 Fn 𝑛 ∧ 𝜑 ∧ 𝜓 ) ) |
| 3 |
|
bnj1097.5 |
⊢ ( 𝜏 ↔ ( 𝐵 ∈ V ∧ TrFo ( 𝐵 , 𝐴 , 𝑅 ) ∧ pred ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐵 ) ) |
| 4 |
1
|
biimpi |
⊢ ( 𝜑 → ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) |
| 5 |
2 4
|
bnj771 |
⊢ ( 𝜒 → ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) |
| 6 |
5
|
3ad2ant3 |
⊢ ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ) → ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) |
| 7 |
6
|
adantr |
⊢ ( ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ) ∧ 𝜑0 ) → ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) |
| 8 |
3
|
simp3bi |
⊢ ( 𝜏 → pred ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐵 ) |
| 9 |
8
|
3ad2ant2 |
⊢ ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ) → pred ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐵 ) |
| 10 |
9
|
adantr |
⊢ ( ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ) ∧ 𝜑0 ) → pred ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐵 ) |
| 11 |
7 10
|
jca |
⊢ ( ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ) ∧ 𝜑0 ) → ( ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ pred ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐵 ) ) |
| 12 |
11
|
anim2i |
⊢ ( ( 𝑖 = ∅ ∧ ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ) ∧ 𝜑0 ) ) → ( 𝑖 = ∅ ∧ ( ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ pred ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐵 ) ) ) |
| 13 |
|
3anass |
⊢ ( ( 𝑖 = ∅ ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ pred ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐵 ) ↔ ( 𝑖 = ∅ ∧ ( ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ pred ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐵 ) ) ) |
| 14 |
12 13
|
sylibr |
⊢ ( ( 𝑖 = ∅ ∧ ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ) ∧ 𝜑0 ) ) → ( 𝑖 = ∅ ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ pred ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐵 ) ) |
| 15 |
|
fveqeq2 |
⊢ ( 𝑖 = ∅ → ( ( 𝑓 ‘ 𝑖 ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) ) |
| 16 |
15
|
biimpar |
⊢ ( ( 𝑖 = ∅ ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) → ( 𝑓 ‘ 𝑖 ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) |
| 17 |
16
|
adantr |
⊢ ( ( ( 𝑖 = ∅ ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) ∧ pred ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐵 ) → ( 𝑓 ‘ 𝑖 ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) |
| 18 |
|
simpr |
⊢ ( ( ( 𝑖 = ∅ ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) ∧ pred ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐵 ) → pred ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐵 ) |
| 19 |
17 18
|
eqsstrd |
⊢ ( ( ( 𝑖 = ∅ ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ) ∧ pred ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐵 ) → ( 𝑓 ‘ 𝑖 ) ⊆ 𝐵 ) |
| 20 |
19
|
3impa |
⊢ ( ( 𝑖 = ∅ ∧ ( 𝑓 ‘ ∅ ) = pred ( 𝑋 , 𝐴 , 𝑅 ) ∧ pred ( 𝑋 , 𝐴 , 𝑅 ) ⊆ 𝐵 ) → ( 𝑓 ‘ 𝑖 ) ⊆ 𝐵 ) |
| 21 |
14 20
|
syl |
⊢ ( ( 𝑖 = ∅ ∧ ( ( 𝜃 ∧ 𝜏 ∧ 𝜒 ) ∧ 𝜑0 ) ) → ( 𝑓 ‘ 𝑖 ) ⊆ 𝐵 ) |