Metamath Proof Explorer


Theorem bnj1152

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Assertion bnj1152 ( 𝑌 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) ↔ ( 𝑌𝐴𝑌 𝑅 𝑋 ) )

Proof

Step Hyp Ref Expression
1 breq1 ( 𝑦 = 𝑌 → ( 𝑦 𝑅 𝑋𝑌 𝑅 𝑋 ) )
2 df-bnj14 pred ( 𝑋 , 𝐴 , 𝑅 ) = { 𝑦𝐴𝑦 𝑅 𝑋 }
3 1 2 elrab2 ( 𝑌 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) ↔ ( 𝑌𝐴𝑌 𝑅 𝑋 ) )