Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | bnj1152 | ⊢ ( 𝑌 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) ↔ ( 𝑌 ∈ 𝐴 ∧ 𝑌 𝑅 𝑋 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 | ⊢ ( 𝑦 = 𝑌 → ( 𝑦 𝑅 𝑋 ↔ 𝑌 𝑅 𝑋 ) ) | |
2 | df-bnj14 | ⊢ pred ( 𝑋 , 𝐴 , 𝑅 ) = { 𝑦 ∈ 𝐴 ∣ 𝑦 𝑅 𝑋 } | |
3 | 1 2 | elrab2 | ⊢ ( 𝑌 ∈ pred ( 𝑋 , 𝐴 , 𝑅 ) ↔ ( 𝑌 ∈ 𝐴 ∧ 𝑌 𝑅 𝑋 ) ) |