Metamath Proof Explorer


Theorem bnj1152

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Assertion bnj1152 Y pred X A R Y A Y R X

Proof

Step Hyp Ref Expression
1 breq1 y = Y y R X Y R X
2 df-bnj14 pred X A R = y A | y R X
3 1 2 elrab2 Y pred X A R Y A Y R X