Metamath Proof Explorer


Theorem bnj1154

Description: Property of Fr . (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Assertion bnj1154 R Fr A B A B B V x B y B ¬ y R x

Proof

Step Hyp Ref Expression
1 bnj658 R Fr A B A B B V R Fr A B A B
2 elisset B V b b = B
3 2 bnj708 R Fr A B A B B V b b = B
4 df-fr R Fr A b b A b x b y b ¬ y R x
5 4 biimpi R Fr A b b A b x b y b ¬ y R x
6 5 19.21bi R Fr A b A b x b y b ¬ y R x
7 6 3impib R Fr A b A b x b y b ¬ y R x
8 sseq1 b = B b A B A
9 neeq1 b = B b B
10 8 9 3anbi23d b = B R Fr A b A b R Fr A B A B
11 raleq b = B y b ¬ y R x y B ¬ y R x
12 11 rexeqbi1dv b = B x b y b ¬ y R x x B y B ¬ y R x
13 10 12 imbi12d b = B R Fr A b A b x b y b ¬ y R x R Fr A B A B x B y B ¬ y R x
14 7 13 mpbii b = B R Fr A B A B x B y B ¬ y R x
15 3 14 bnj593 R Fr A B A B B V b R Fr A B A B x B y B ¬ y R x
16 15 bnj937 R Fr A B A B B V R Fr A B A B x B y B ¬ y R x
17 1 16 mpd R Fr A B A B B V x B y B ¬ y R x