Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | bnj1152 | |- ( Y e. _pred ( X , A , R ) <-> ( Y e. A /\ Y R X ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 | |- ( y = Y -> ( y R X <-> Y R X ) ) |
|
2 | df-bnj14 | |- _pred ( X , A , R ) = { y e. A | y R X } |
|
3 | 1 2 | elrab2 | |- ( Y e. _pred ( X , A , R ) <-> ( Y e. A /\ Y R X ) ) |