Metamath Proof Explorer


Theorem bnj1152

Description: Technical lemma for bnj69 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Assertion bnj1152
|- ( Y e. _pred ( X , A , R ) <-> ( Y e. A /\ Y R X ) )

Proof

Step Hyp Ref Expression
1 breq1
 |-  ( y = Y -> ( y R X <-> Y R X ) )
2 df-bnj14
 |-  _pred ( X , A , R ) = { y e. A | y R X }
3 1 2 elrab2
 |-  ( Y e. _pred ( X , A , R ) <-> ( Y e. A /\ Y R X ) )