| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj1171.13 |
⊢ ( ( 𝜑 ∧ 𝜓 ) → 𝐵 ⊆ 𝐴 ) |
| 2 |
|
bnj1171.129 |
⊢ ∃ 𝑧 ∀ 𝑤 ( ( 𝜑 ∧ 𝜓 ) → ( 𝑧 ∈ 𝐵 ∧ ( 𝑤 ∈ 𝐴 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐵 ) ) ) ) |
| 3 |
1
|
sseld |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑤 ∈ 𝐵 → 𝑤 ∈ 𝐴 ) ) |
| 4 |
3
|
pm4.71rd |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑤 ∈ 𝐵 ↔ ( 𝑤 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) ) ) |
| 5 |
4
|
imbi1d |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝑤 ∈ 𝐵 → ¬ 𝑤 𝑅 𝑧 ) ↔ ( ( 𝑤 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) → ¬ 𝑤 𝑅 𝑧 ) ) ) |
| 6 |
|
impexp |
⊢ ( ( ( 𝑤 ∈ 𝐴 ∧ 𝑤 ∈ 𝐵 ) → ¬ 𝑤 𝑅 𝑧 ) ↔ ( 𝑤 ∈ 𝐴 → ( 𝑤 ∈ 𝐵 → ¬ 𝑤 𝑅 𝑧 ) ) ) |
| 7 |
5 6
|
bitrdi |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝑤 ∈ 𝐵 → ¬ 𝑤 𝑅 𝑧 ) ↔ ( 𝑤 ∈ 𝐴 → ( 𝑤 ∈ 𝐵 → ¬ 𝑤 𝑅 𝑧 ) ) ) ) |
| 8 |
|
con2b |
⊢ ( ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐵 ) ↔ ( 𝑤 ∈ 𝐵 → ¬ 𝑤 𝑅 𝑧 ) ) |
| 9 |
8
|
imbi2i |
⊢ ( ( 𝑤 ∈ 𝐴 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐵 ) ) ↔ ( 𝑤 ∈ 𝐴 → ( 𝑤 ∈ 𝐵 → ¬ 𝑤 𝑅 𝑧 ) ) ) |
| 10 |
7 9
|
bitr4di |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝑤 ∈ 𝐵 → ¬ 𝑤 𝑅 𝑧 ) ↔ ( 𝑤 ∈ 𝐴 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐵 ) ) ) ) |
| 11 |
10
|
anbi2d |
⊢ ( ( 𝜑 ∧ 𝜓 ) → ( ( 𝑧 ∈ 𝐵 ∧ ( 𝑤 ∈ 𝐵 → ¬ 𝑤 𝑅 𝑧 ) ) ↔ ( 𝑧 ∈ 𝐵 ∧ ( 𝑤 ∈ 𝐴 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐵 ) ) ) ) ) |
| 12 |
11
|
pm5.74i |
⊢ ( ( ( 𝜑 ∧ 𝜓 ) → ( 𝑧 ∈ 𝐵 ∧ ( 𝑤 ∈ 𝐵 → ¬ 𝑤 𝑅 𝑧 ) ) ) ↔ ( ( 𝜑 ∧ 𝜓 ) → ( 𝑧 ∈ 𝐵 ∧ ( 𝑤 ∈ 𝐴 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐵 ) ) ) ) ) |
| 13 |
12
|
albii |
⊢ ( ∀ 𝑤 ( ( 𝜑 ∧ 𝜓 ) → ( 𝑧 ∈ 𝐵 ∧ ( 𝑤 ∈ 𝐵 → ¬ 𝑤 𝑅 𝑧 ) ) ) ↔ ∀ 𝑤 ( ( 𝜑 ∧ 𝜓 ) → ( 𝑧 ∈ 𝐵 ∧ ( 𝑤 ∈ 𝐴 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐵 ) ) ) ) ) |
| 14 |
13
|
exbii |
⊢ ( ∃ 𝑧 ∀ 𝑤 ( ( 𝜑 ∧ 𝜓 ) → ( 𝑧 ∈ 𝐵 ∧ ( 𝑤 ∈ 𝐵 → ¬ 𝑤 𝑅 𝑧 ) ) ) ↔ ∃ 𝑧 ∀ 𝑤 ( ( 𝜑 ∧ 𝜓 ) → ( 𝑧 ∈ 𝐵 ∧ ( 𝑤 ∈ 𝐴 → ( 𝑤 𝑅 𝑧 → ¬ 𝑤 ∈ 𝐵 ) ) ) ) ) |
| 15 |
2 14
|
mpbir |
⊢ ∃ 𝑧 ∀ 𝑤 ( ( 𝜑 ∧ 𝜓 ) → ( 𝑧 ∈ 𝐵 ∧ ( 𝑤 ∈ 𝐵 → ¬ 𝑤 𝑅 𝑧 ) ) ) |