Step |
Hyp |
Ref |
Expression |
1 |
|
bnj1373.1 |
⊢ 𝐵 = { 𝑑 ∣ ( 𝑑 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) } |
2 |
|
bnj1373.2 |
⊢ 𝑌 = 〈 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 |
3 |
|
bnj1373.3 |
⊢ 𝐶 = { 𝑓 ∣ ∃ 𝑑 ∈ 𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) } |
4 |
|
bnj1373.4 |
⊢ ( 𝜏 ↔ ( 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) ) |
5 |
|
bnj1373.5 |
⊢ ( 𝜏′ ↔ [ 𝑦 / 𝑥 ] 𝜏 ) |
6 |
1
|
bnj1309 |
⊢ ( 𝑓 ∈ 𝐵 → ∀ 𝑥 𝑓 ∈ 𝐵 ) |
7 |
3 6
|
bnj1307 |
⊢ ( 𝑓 ∈ 𝐶 → ∀ 𝑥 𝑓 ∈ 𝐶 ) |
8 |
7
|
bnj1351 |
⊢ ( ( 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ( { 𝑦 } ∪ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) → ∀ 𝑥 ( 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ( { 𝑦 } ∪ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
9 |
8
|
nf5i |
⊢ Ⅎ 𝑥 ( 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ( { 𝑦 } ∪ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
10 |
|
sneq |
⊢ ( 𝑥 = 𝑦 → { 𝑥 } = { 𝑦 } ) |
11 |
|
bnj1318 |
⊢ ( 𝑥 = 𝑦 → trCl ( 𝑥 , 𝐴 , 𝑅 ) = trCl ( 𝑦 , 𝐴 , 𝑅 ) ) |
12 |
10 11
|
uneq12d |
⊢ ( 𝑥 = 𝑦 → ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) = ( { 𝑦 } ∪ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
13 |
12
|
eqeq2d |
⊢ ( 𝑥 = 𝑦 → ( dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ↔ dom 𝑓 = ( { 𝑦 } ∪ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
14 |
13
|
anbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) ↔ ( 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ( { 𝑦 } ∪ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) ) |
15 |
4 14
|
syl5bb |
⊢ ( 𝑥 = 𝑦 → ( 𝜏 ↔ ( 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ( { 𝑦 } ∪ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) ) |
16 |
9 15
|
sbciegf |
⊢ ( 𝑦 ∈ V → ( [ 𝑦 / 𝑥 ] 𝜏 ↔ ( 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ( { 𝑦 } ∪ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) ) |
17 |
16
|
elv |
⊢ ( [ 𝑦 / 𝑥 ] 𝜏 ↔ ( 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ( { 𝑦 } ∪ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |
18 |
5 17
|
bitri |
⊢ ( 𝜏′ ↔ ( 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ( { 𝑦 } ∪ trCl ( 𝑦 , 𝐴 , 𝑅 ) ) ) ) |