Metamath Proof Explorer


Theorem bnj1493

Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1493.1 𝐵 = { 𝑑 ∣ ( 𝑑𝐴 ∧ ∀ 𝑥𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) }
bnj1493.2 𝑌 = ⟨ 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩
bnj1493.3 𝐶 = { 𝑓 ∣ ∃ 𝑑𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥𝑑 ( 𝑓𝑥 ) = ( 𝐺𝑌 ) ) }
Assertion bnj1493 ( 𝑅 FrSe 𝐴 → ∀ 𝑥𝐴𝑓𝐶 dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) )

Proof

Step Hyp Ref Expression
1 bnj1493.1 𝐵 = { 𝑑 ∣ ( 𝑑𝐴 ∧ ∀ 𝑥𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) }
2 bnj1493.2 𝑌 = ⟨ 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩
3 bnj1493.3 𝐶 = { 𝑓 ∣ ∃ 𝑑𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥𝑑 ( 𝑓𝑥 ) = ( 𝐺𝑌 ) ) }
4 biid ( ( 𝑓𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) ↔ ( 𝑓𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) )
5 eqid { 𝑥𝐴 ∣ ¬ ∃ 𝑓 ( 𝑓𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) } = { 𝑥𝐴 ∣ ¬ ∃ 𝑓 ( 𝑓𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) }
6 biid ( ( 𝑅 FrSe 𝐴 ∧ { 𝑥𝐴 ∣ ¬ ∃ 𝑓 ( 𝑓𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) } ≠ ∅ ) ↔ ( 𝑅 FrSe 𝐴 ∧ { 𝑥𝐴 ∣ ¬ ∃ 𝑓 ( 𝑓𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) } ≠ ∅ ) )
7 biid ( ( ( 𝑅 FrSe 𝐴 ∧ { 𝑥𝐴 ∣ ¬ ∃ 𝑓 ( 𝑓𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) } ≠ ∅ ) ∧ 𝑥 ∈ { 𝑥𝐴 ∣ ¬ ∃ 𝑓 ( 𝑓𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) } ∧ ∀ 𝑦 ∈ { 𝑥𝐴 ∣ ¬ ∃ 𝑓 ( 𝑓𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) } ¬ 𝑦 𝑅 𝑥 ) ↔ ( ( 𝑅 FrSe 𝐴 ∧ { 𝑥𝐴 ∣ ¬ ∃ 𝑓 ( 𝑓𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) } ≠ ∅ ) ∧ 𝑥 ∈ { 𝑥𝐴 ∣ ¬ ∃ 𝑓 ( 𝑓𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) } ∧ ∀ 𝑦 ∈ { 𝑥𝐴 ∣ ¬ ∃ 𝑓 ( 𝑓𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) } ¬ 𝑦 𝑅 𝑥 ) )
8 biid ( [ 𝑦 / 𝑥 ] ( 𝑓𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) ↔ [ 𝑦 / 𝑥 ] ( 𝑓𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) )
9 eqid { 𝑓 ∣ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) [ 𝑦 / 𝑥 ] ( 𝑓𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) } = { 𝑓 ∣ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) [ 𝑦 / 𝑥 ] ( 𝑓𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) }
10 eqid { 𝑓 ∣ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) [ 𝑦 / 𝑥 ] ( 𝑓𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) } = { 𝑓 ∣ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) [ 𝑦 / 𝑥 ] ( 𝑓𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) }
11 eqid 𝑥 , ( { 𝑓 ∣ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) [ 𝑦 / 𝑥 ] ( 𝑓𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) } ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩ = ⟨ 𝑥 , ( { 𝑓 ∣ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) [ 𝑦 / 𝑥 ] ( 𝑓𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) } ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩
12 eqid ( { 𝑓 ∣ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) [ 𝑦 / 𝑥 ] ( 𝑓𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) } ∪ { ⟨ 𝑥 , ( 𝐺 ‘ ⟨ 𝑥 , ( { 𝑓 ∣ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) [ 𝑦 / 𝑥 ] ( 𝑓𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) } ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩ ) ⟩ } ) = ( { 𝑓 ∣ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) [ 𝑦 / 𝑥 ] ( 𝑓𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) } ∪ { ⟨ 𝑥 , ( 𝐺 ‘ ⟨ 𝑥 , ( { 𝑓 ∣ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) [ 𝑦 / 𝑥 ] ( 𝑓𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) } ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩ ) ⟩ } )
13 eqid 𝑧 , ( ( { 𝑓 ∣ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) [ 𝑦 / 𝑥 ] ( 𝑓𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) } ∪ { ⟨ 𝑥 , ( 𝐺 ‘ ⟨ 𝑥 , ( { 𝑓 ∣ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) [ 𝑦 / 𝑥 ] ( 𝑓𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) } ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩ ) ⟩ } ) ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) ⟩ = ⟨ 𝑧 , ( ( { 𝑓 ∣ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) [ 𝑦 / 𝑥 ] ( 𝑓𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) } ∪ { ⟨ 𝑥 , ( 𝐺 ‘ ⟨ 𝑥 , ( { 𝑓 ∣ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) [ 𝑦 / 𝑥 ] ( 𝑓𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) } ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) ⟩ ) ⟩ } ) ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) ⟩
14 eqid ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) )
15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 bnj1312 ( 𝑅 FrSe 𝐴 → ∀ 𝑥𝐴𝑓𝐶 dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) )