| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj1493.1 |
⊢ 𝐵 = { 𝑑 ∣ ( 𝑑 ⊆ 𝐴 ∧ ∀ 𝑥 ∈ 𝑑 pred ( 𝑥 , 𝐴 , 𝑅 ) ⊆ 𝑑 ) } |
| 2 |
|
bnj1493.2 |
⊢ 𝑌 = 〈 𝑥 , ( 𝑓 ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 |
| 3 |
|
bnj1493.3 |
⊢ 𝐶 = { 𝑓 ∣ ∃ 𝑑 ∈ 𝐵 ( 𝑓 Fn 𝑑 ∧ ∀ 𝑥 ∈ 𝑑 ( 𝑓 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑌 ) ) } |
| 4 |
|
biid |
⊢ ( ( 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) ↔ ( 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) ) |
| 5 |
|
eqid |
⊢ { 𝑥 ∈ 𝐴 ∣ ¬ ∃ 𝑓 ( 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) } = { 𝑥 ∈ 𝐴 ∣ ¬ ∃ 𝑓 ( 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) } |
| 6 |
|
biid |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ { 𝑥 ∈ 𝐴 ∣ ¬ ∃ 𝑓 ( 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) } ≠ ∅ ) ↔ ( 𝑅 FrSe 𝐴 ∧ { 𝑥 ∈ 𝐴 ∣ ¬ ∃ 𝑓 ( 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) } ≠ ∅ ) ) |
| 7 |
|
biid |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ { 𝑥 ∈ 𝐴 ∣ ¬ ∃ 𝑓 ( 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) } ≠ ∅ ) ∧ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ ∃ 𝑓 ( 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) } ∧ ∀ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ ∃ 𝑓 ( 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) } ¬ 𝑦 𝑅 𝑥 ) ↔ ( ( 𝑅 FrSe 𝐴 ∧ { 𝑥 ∈ 𝐴 ∣ ¬ ∃ 𝑓 ( 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) } ≠ ∅ ) ∧ 𝑥 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ ∃ 𝑓 ( 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) } ∧ ∀ 𝑦 ∈ { 𝑥 ∈ 𝐴 ∣ ¬ ∃ 𝑓 ( 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) } ¬ 𝑦 𝑅 𝑥 ) ) |
| 8 |
|
biid |
⊢ ( [ 𝑦 / 𝑥 ] ( 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) ↔ [ 𝑦 / 𝑥 ] ( 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) ) |
| 9 |
|
eqid |
⊢ { 𝑓 ∣ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) [ 𝑦 / 𝑥 ] ( 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) } = { 𝑓 ∣ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) [ 𝑦 / 𝑥 ] ( 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) } |
| 10 |
|
eqid |
⊢ ∪ { 𝑓 ∣ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) [ 𝑦 / 𝑥 ] ( 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) } = ∪ { 𝑓 ∣ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) [ 𝑦 / 𝑥 ] ( 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) } |
| 11 |
|
eqid |
⊢ 〈 𝑥 , ( ∪ { 𝑓 ∣ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) [ 𝑦 / 𝑥 ] ( 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) } ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 = 〈 𝑥 , ( ∪ { 𝑓 ∣ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) [ 𝑦 / 𝑥 ] ( 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) } ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 |
| 12 |
|
eqid |
⊢ ( ∪ { 𝑓 ∣ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) [ 𝑦 / 𝑥 ] ( 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) } ∪ { 〈 𝑥 , ( 𝐺 ‘ 〈 𝑥 , ( ∪ { 𝑓 ∣ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) [ 𝑦 / 𝑥 ] ( 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) } ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 ) 〉 } ) = ( ∪ { 𝑓 ∣ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) [ 𝑦 / 𝑥 ] ( 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) } ∪ { 〈 𝑥 , ( 𝐺 ‘ 〈 𝑥 , ( ∪ { 𝑓 ∣ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) [ 𝑦 / 𝑥 ] ( 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) } ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 ) 〉 } ) |
| 13 |
|
eqid |
⊢ 〈 𝑧 , ( ( ∪ { 𝑓 ∣ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) [ 𝑦 / 𝑥 ] ( 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) } ∪ { 〈 𝑥 , ( 𝐺 ‘ 〈 𝑥 , ( ∪ { 𝑓 ∣ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) [ 𝑦 / 𝑥 ] ( 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) } ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 ) 〉 } ) ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) 〉 = 〈 𝑧 , ( ( ∪ { 𝑓 ∣ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) [ 𝑦 / 𝑥 ] ( 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) } ∪ { 〈 𝑥 , ( 𝐺 ‘ 〈 𝑥 , ( ∪ { 𝑓 ∣ ∃ 𝑦 ∈ pred ( 𝑥 , 𝐴 , 𝑅 ) [ 𝑦 / 𝑥 ] ( 𝑓 ∈ 𝐶 ∧ dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) } ↾ pred ( 𝑥 , 𝐴 , 𝑅 ) ) 〉 ) 〉 } ) ↾ pred ( 𝑧 , 𝐴 , 𝑅 ) ) 〉 |
| 14 |
|
eqid |
⊢ ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) |
| 15 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14
|
bnj1312 |
⊢ ( 𝑅 FrSe 𝐴 → ∀ 𝑥 ∈ 𝐴 ∃ 𝑓 ∈ 𝐶 dom 𝑓 = ( { 𝑥 } ∪ trCl ( 𝑥 , 𝐴 , 𝑅 ) ) ) |