Metamath Proof Explorer


Theorem bnj1493

Description: Technical lemma for bnj60 . This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (New usage is discouraged.)

Ref Expression
Hypotheses bnj1493.1 B=d|dAxdpredxARd
bnj1493.2 Y=xfpredxAR
bnj1493.3 C=f|dBfFndxdfx=GY
Assertion bnj1493 RFrSeAxAfCdomf=xtrClxAR

Proof

Step Hyp Ref Expression
1 bnj1493.1 B=d|dAxdpredxARd
2 bnj1493.2 Y=xfpredxAR
3 bnj1493.3 C=f|dBfFndxdfx=GY
4 biid fCdomf=xtrClxARfCdomf=xtrClxAR
5 eqid xA|¬ffCdomf=xtrClxAR=xA|¬ffCdomf=xtrClxAR
6 biid RFrSeAxA|¬ffCdomf=xtrClxARRFrSeAxA|¬ffCdomf=xtrClxAR
7 biid RFrSeAxA|¬ffCdomf=xtrClxARxxA|¬ffCdomf=xtrClxARyxA|¬ffCdomf=xtrClxAR¬yRxRFrSeAxA|¬ffCdomf=xtrClxARxxA|¬ffCdomf=xtrClxARyxA|¬ffCdomf=xtrClxAR¬yRx
8 biid [˙y/x]˙fCdomf=xtrClxAR[˙y/x]˙fCdomf=xtrClxAR
9 eqid f|ypredxAR[˙y/x]˙fCdomf=xtrClxAR=f|ypredxAR[˙y/x]˙fCdomf=xtrClxAR
10 eqid f|ypredxAR[˙y/x]˙fCdomf=xtrClxAR=f|ypredxAR[˙y/x]˙fCdomf=xtrClxAR
11 eqid xf|ypredxAR[˙y/x]˙fCdomf=xtrClxARpredxAR=xf|ypredxAR[˙y/x]˙fCdomf=xtrClxARpredxAR
12 eqid f|ypredxAR[˙y/x]˙fCdomf=xtrClxARxGxf|ypredxAR[˙y/x]˙fCdomf=xtrClxARpredxAR=f|ypredxAR[˙y/x]˙fCdomf=xtrClxARxGxf|ypredxAR[˙y/x]˙fCdomf=xtrClxARpredxAR
13 eqid zf|ypredxAR[˙y/x]˙fCdomf=xtrClxARxGxf|ypredxAR[˙y/x]˙fCdomf=xtrClxARpredxARpredzAR=zf|ypredxAR[˙y/x]˙fCdomf=xtrClxARxGxf|ypredxAR[˙y/x]˙fCdomf=xtrClxARpredxARpredzAR
14 eqid xtrClxAR=xtrClxAR
15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 bnj1312 RFrSeAxAfCdomf=xtrClxAR