| Step |
Hyp |
Ref |
Expression |
| 1 |
|
bnj553.1 |
⊢ ( 𝜑′ ↔ ( 𝑓 ‘ ∅ ) = pred ( 𝑥 , 𝐴 , 𝑅 ) ) |
| 2 |
|
bnj553.2 |
⊢ ( 𝜓′ ↔ ∀ 𝑖 ∈ ω ( suc 𝑖 ∈ 𝑚 → ( 𝑓 ‘ suc 𝑖 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) ) |
| 3 |
|
bnj553.3 |
⊢ 𝐷 = ( ω ∖ { ∅ } ) |
| 4 |
|
bnj553.4 |
⊢ 𝐺 = ( 𝑓 ∪ { 〈 𝑚 , ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) 〉 } ) |
| 5 |
|
bnj553.5 |
⊢ ( 𝜏 ↔ ( 𝑓 Fn 𝑚 ∧ 𝜑′ ∧ 𝜓′ ) ) |
| 6 |
|
bnj553.6 |
⊢ ( 𝜎 ↔ ( 𝑚 ∈ 𝐷 ∧ 𝑛 = suc 𝑚 ∧ 𝑝 ∈ 𝑚 ) ) |
| 7 |
|
bnj553.7 |
⊢ 𝐶 = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) |
| 8 |
|
bnj553.8 |
⊢ 𝐺 = ( 𝑓 ∪ { 〈 𝑚 , 𝐶 〉 } ) |
| 9 |
|
bnj553.9 |
⊢ 𝐵 = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) |
| 10 |
|
bnj553.10 |
⊢ 𝐾 = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) |
| 11 |
|
bnj553.11 |
⊢ 𝐿 = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) |
| 12 |
|
bnj553.12 |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎 ) → 𝐺 Fn 𝑛 ) |
| 13 |
12
|
fnfund |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎 ) → Fun 𝐺 ) |
| 14 |
|
opex |
⊢ 〈 𝑚 , 𝐶 〉 ∈ V |
| 15 |
14
|
snid |
⊢ 〈 𝑚 , 𝐶 〉 ∈ { 〈 𝑚 , 𝐶 〉 } |
| 16 |
|
elun2 |
⊢ ( 〈 𝑚 , 𝐶 〉 ∈ { 〈 𝑚 , 𝐶 〉 } → 〈 𝑚 , 𝐶 〉 ∈ ( 𝑓 ∪ { 〈 𝑚 , 𝐶 〉 } ) ) |
| 17 |
15 16
|
ax-mp |
⊢ 〈 𝑚 , 𝐶 〉 ∈ ( 𝑓 ∪ { 〈 𝑚 , 𝐶 〉 } ) |
| 18 |
17 8
|
eleqtrri |
⊢ 〈 𝑚 , 𝐶 〉 ∈ 𝐺 |
| 19 |
|
funopfv |
⊢ ( Fun 𝐺 → ( 〈 𝑚 , 𝐶 〉 ∈ 𝐺 → ( 𝐺 ‘ 𝑚 ) = 𝐶 ) ) |
| 20 |
13 18 19
|
mpisyl |
⊢ ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎 ) → ( 𝐺 ‘ 𝑚 ) = 𝐶 ) |
| 21 |
20
|
3ad2ant1 |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎 ) ∧ 𝑖 ∈ 𝑚 ∧ 𝑝 = 𝑖 ) → ( 𝐺 ‘ 𝑚 ) = 𝐶 ) |
| 22 |
|
fveq2 |
⊢ ( 𝑝 = 𝑖 → ( 𝐺 ‘ 𝑝 ) = ( 𝐺 ‘ 𝑖 ) ) |
| 23 |
22
|
bnj1113 |
⊢ ( 𝑝 = 𝑖 → ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) = ∪ 𝑦 ∈ ( 𝐺 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) |
| 24 |
23 11 10
|
3eqtr4g |
⊢ ( 𝑝 = 𝑖 → 𝐿 = 𝐾 ) |
| 25 |
24
|
3ad2ant3 |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎 ) ∧ 𝑖 ∈ 𝑚 ∧ 𝑝 = 𝑖 ) → 𝐿 = 𝐾 ) |
| 26 |
5 9 10 4 12
|
bnj548 |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎 ) ∧ 𝑖 ∈ 𝑚 ) → 𝐵 = 𝐾 ) |
| 27 |
26
|
3adant3 |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎 ) ∧ 𝑖 ∈ 𝑚 ∧ 𝑝 = 𝑖 ) → 𝐵 = 𝐾 ) |
| 28 |
|
fveq2 |
⊢ ( 𝑝 = 𝑖 → ( 𝑓 ‘ 𝑝 ) = ( 𝑓 ‘ 𝑖 ) ) |
| 29 |
28
|
bnj1113 |
⊢ ( 𝑝 = 𝑖 → ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) |
| 30 |
9 7
|
eqeq12i |
⊢ ( 𝐵 = 𝐶 ↔ ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) |
| 31 |
|
eqcom |
⊢ ( ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ↔ ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) |
| 32 |
30 31
|
bitri |
⊢ ( 𝐵 = 𝐶 ↔ ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑝 ) pred ( 𝑦 , 𝐴 , 𝑅 ) = ∪ 𝑦 ∈ ( 𝑓 ‘ 𝑖 ) pred ( 𝑦 , 𝐴 , 𝑅 ) ) |
| 33 |
29 32
|
sylibr |
⊢ ( 𝑝 = 𝑖 → 𝐵 = 𝐶 ) |
| 34 |
33
|
3ad2ant3 |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎 ) ∧ 𝑖 ∈ 𝑚 ∧ 𝑝 = 𝑖 ) → 𝐵 = 𝐶 ) |
| 35 |
25 27 34
|
3eqtr2rd |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎 ) ∧ 𝑖 ∈ 𝑚 ∧ 𝑝 = 𝑖 ) → 𝐶 = 𝐿 ) |
| 36 |
21 35
|
eqtrd |
⊢ ( ( ( 𝑅 FrSe 𝐴 ∧ 𝜏 ∧ 𝜎 ) ∧ 𝑖 ∈ 𝑚 ∧ 𝑝 = 𝑖 ) → ( 𝐺 ‘ 𝑚 ) = 𝐿 ) |