Metamath Proof Explorer


Theorem breq1dd

Description: Equality deduction for a binary relation. (Contributed by Thierry Arnoux, 10-Jan-2026)

Ref Expression
Hypotheses breq1dd.1 ( 𝜑𝐴 = 𝐵 )
breq1dd.2 ( 𝜑𝐴 𝑅 𝐶 )
Assertion breq1dd ( 𝜑𝐵 𝑅 𝐶 )

Proof

Step Hyp Ref Expression
1 breq1dd.1 ( 𝜑𝐴 = 𝐵 )
2 breq1dd.2 ( 𝜑𝐴 𝑅 𝐶 )
3 1 breq1d ( 𝜑 → ( 𝐴 𝑅 𝐶𝐵 𝑅 𝐶 ) )
4 2 3 mpbid ( 𝜑𝐵 𝑅 𝐶 )