Metamath Proof Explorer


Theorem breq1dd

Description: Equality deduction for a binary relation. (Contributed by Thierry Arnoux, 10-Jan-2026)

Ref Expression
Hypotheses breq1dd.1
|- ( ph -> A = B )
breq1dd.2
|- ( ph -> A R C )
Assertion breq1dd
|- ( ph -> B R C )

Proof

Step Hyp Ref Expression
1 breq1dd.1
 |-  ( ph -> A = B )
2 breq1dd.2
 |-  ( ph -> A R C )
3 1 breq1d
 |-  ( ph -> ( A R C <-> B R C ) )
4 2 3 mpbid
 |-  ( ph -> B R C )