Metamath Proof Explorer


Theorem breq1dd

Description: Equality deduction for a binary relation. (Contributed by Thierry Arnoux, 10-Jan-2026)

Ref Expression
Hypotheses breq1dd.1 φ A = B
breq1dd.2 φ A R C
Assertion breq1dd φ B R C

Proof

Step Hyp Ref Expression
1 breq1dd.1 φ A = B
2 breq1dd.2 φ A R C
3 1 breq1d φ A R C B R C
4 2 3 mpbid φ B R C