Metamath Proof Explorer


Theorem brresi2

Description: Restriction of a binary relation. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Hypothesis brresi2.1 𝐵 ∈ V
Assertion brresi2 ( 𝐴 ( 𝑅𝐶 ) 𝐵𝐴 𝑅 𝐵 )

Proof

Step Hyp Ref Expression
1 brresi2.1 𝐵 ∈ V
2 resss ( 𝑅𝐶 ) ⊆ 𝑅
3 2 ssbri ( 𝐴 ( 𝑅𝐶 ) 𝐵𝐴 𝑅 𝐵 )