Description: Equality deduction for function abstractions. (Contributed by Jeff Madsen, 19-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | fnopabeqd.1 | ⊢ ( 𝜑 → 𝐵 = 𝐶 ) | |
| Assertion | fnopabeqd | ⊢ ( 𝜑 → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnopabeqd.1 | ⊢ ( 𝜑 → 𝐵 = 𝐶 ) | |
| 2 | 1 | eqeq2d | ⊢ ( 𝜑 → ( 𝑦 = 𝐵 ↔ 𝑦 = 𝐶 ) ) |
| 3 | 2 | anbi2d | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) ) ) |
| 4 | 3 | opabbidv | ⊢ ( 𝜑 → { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐵 ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝐶 ) } ) |